ﻻ يوجد ملخص باللغة العربية
Ultrathin freestanding membranes with a pronounced metal-insulator transition (MIT) provides huge potential in future flexible electronic applications as well as a unique aspect of the study of lattice-electron interplay. However, the reduction of the thickness to an ultrathin region (a few nm) is typically detrimental to the MIT in epitaxial films, and even catastrophic for their freestanding form. Here, we report an enhanced MIT in VO2-based freestanding membranes, with a lateral size up to millimetres and VO2 thickness down to 5 nm. The VO2-membranes were detached by dissolving a Sr3Al2O6 sacrificial layer between the VO2 thin film and c-Al2O3(0001) substrate, allowing a transfer onto arbitrary surfaces. Furthermore, the MIT in the VO2-membrane was greatly enhanced by inserting an intermediate Al2O3 buffer layer. In comparison to the best available ultrathin VO2-membranes, the enhancement of MIT is over 400% at 5 nm VO2 thickness and more than one order of magnitude for VO2 above 10 nm. Our study widens the spectrum of functionality in ultrathin and large-scale membranes, and enables the potential integration of MIT into flexible electronics and photonics.
The Metal-Insulator transition (MIT) in VO2 is characterized by the complex interplay among lattice, electronic and orbital degrees of freedom. In this contribution we investigated the strain-modulation of the orbital hierarchy and the influence over
Synchrotron X-ray total scattering studies of structural changes in rutile VO2 at the metal-insulator transition temperature of 340 K reveal that monoclinic and tetragonal phases of VO2 coexist in equilibrium, as expected for a first-order phase tran
In this paper we used Raman spectroscopy to investigate the optical properties of vanadium dioxide (VO2) thin films during the thermally induced insulating to metallic phase transition. We observed a significant difference in transition temperature i
Metal-insulator transitions (MIT),an intriguing correlated phenomenon induced by the subtle competition of the electrons repulsive Coulomb interaction and kinetic energy, is of great potential use for electronic applications due to the dramatic chang
Vanadium dioxide (VO2) has been widely studied for its rich physics and potential applications, undergoing a prominent insulator-metal transition (IMT) near room temperature. The transition mechanism remains highly debated, and little is known about