ﻻ يوجد ملخص باللغة العربية
In our previous two papers, we studied (positive) 3D gadgets in origami extrusions which create a top face parallel to the ambient paper and two side faces sharing a ridge with two simple outgoing pleats. Then a natural problem comes up whether it is possible to construct a `negative 3D gadget from any positive one having the same net without changing the outgoing pleats, that is, to sink the top and two side faces of any positive 3D gadget to the reverse side without changing the outgoing pleats. Of course, simply sinking the faces causes a tear of the paper, and thus we have to modify the crease pattern. There are two known constructions of negative 3D gadgets before ours, but they do not solve this problem because their outgoing pleats are different from positive ones. In the present paper we give an affirmative solution to the above problem. For this purpose, we present three constructions of negative 3D gadgets with a supporting triangle on the back side, which are based on our previous ones of positive 3D gadgets. The first two are an extension of those presented in our previous paper, and the third is new. We prove that our first and third constructions solve the problem. Our solutions enable us to deal with positive and negative 3D gadgets on the same basis, so that we can construct from an origami extrusion constructed with 3D gadgets its negative using the same pleats if there are no interferences among the 3D gadgets. We also treat repetition/division of negative 3D gadgets under certain conditions, which reduces their interferences with others.
An origami extrusion is a folding of a 3D object in the middle of a flat piece of paper, using 3D gadgets which create faces with solid angles. Our main concern is to make origami extrusions of polyhedrons using 3D gadgets with simple outgoing pleats
An origami extrusion is a folding of a 3D object in the middle of a flat piece of paper, using 3D gadgets which create faces with solid angles. In this paper we focus on 3D gadgets which create a top face parallel to the ambient paper and two side fa
The Hausdorff distance, the Gromov-Hausdorff, the Frechet and the natural pseudo-distances are instances of dissimilarity measures widely used in shape comparison. We show that they share the property of being defined as $inf_rho F(rho)$ where $F$ is
This paper introduces three sets of sufficient conditions, for generating bijective simplicial mappings of manifold meshes. A necessary condition for a simplicial mapping of a mesh to be injective is that it either maintains the orientation of all el
A terrain is an $x$-monotone polygon whose lower boundary is a single line segment. We present an algorithm to find in a terrain a triangle of largest area in $O(n log n)$ time, where $n$ is the number of vertices defining the terrain. The best previ