ﻻ يوجد ملخص باللغة العربية
Spatiotemporal traffic time series (e.g., traffic volume/speed) collected from sensing systems are often incomplete with considerable corruption and large amounts of missing values, preventing users from harnessing the full power of the data. Missing data imputation has been a long-standing research topic and critical application for real-world intelligent transportation systems. A widely applied imputation method is low-rank matrix/tensor completion; however, the low-rank assumption only preserves the global structure while ignores the strong local consistency in spatiotemporal data. In this paper, we propose a low-rank autoregressive tensor completion (LATC) framework by introducing textit{temporal variation} as a new regularization term into the completion of a third-order (sensor $times$ time of day $times$ day) tensor. The third-order tensor structure allows us to better capture the global consistency of traffic data, such as the inherent seasonality and day-to-day similarity. To achieve local consistency, we design the temporal variation by imposing an AR($p$) model for each time series with coefficients as learnable parameters. Different from previous spatial and temporal regularization schemes, the minimization of temporal variation can better characterize temporal generative mechanisms beyond local smoothness, allowing us to deal with more challenging scenarios such blackout missing. To solve the optimization problem in LATC, we introduce an alternating minimization scheme that estimates the low-rank tensor and autoregressive coefficients iteratively. We conduct extensive numerical experiments on several real-world traffic data sets, and our results demonstrate the effectiveness of LATC in diverse missing scenarios.
Missing value problem in spatiotemporal traffic data has long been a challenging topic, in particular for large-scale and high-dimensional data with complex missing mechanisms and diverse degrees of missingness. Recent studies based on tensor nuclear
Tensor completion estimates missing components by exploiting the low-rank structure of multi-way data. The recently proposed methods based on tensor train (TT) and tensor ring (TR) show better performance in image recovery than classical ones. Compar
Low-rank tensor completion recovers missing entries based on different tensor decompositions. Due to its outstanding performance in exploiting some higher-order data structure, low rank tensor ring has been applied in tensor completion. To further de
Tensor completion refers to the task of estimating the missing data from an incomplete measurement or observation, which is a core problem frequently arising from the areas of big data analysis, computer vision, and network engineering. Due to the mu
Missing value imputation is a fundamental problem in spatiotemporal modeling, from motion tracking to the dynamics of physical systems. Deep autoregressive models suffer from error propagation which becomes catastrophic for imputing long-range sequen