ﻻ يوجد ملخص باللغة العربية
Current large-scale language models can be politically biased as a result of the data they are trained on, potentially causing serious problems when they are deployed in real-world settings. In this paper, we describe metrics for measuring political bias in GPT-2 generation and propose a reinforcement learning (RL) framework for mitigating political biases in generated text. By using rewards from word embeddings or a classifier, our RL framework guides debiased generation without having access to the training data or requiring the model to be retrained. In empirical experiments on three attributes sensitive to political bias (gender, location, and topic), our methods reduced bias according to both our metrics and human evaluation, while maintaining readability and semantic coherence.
Building reliable machine learning systems requires that we correctly understand their level of confidence. Calibration measures the degree of accuracy in a models confidence and most research in calibration focuses on techniques to improve an empiri
As machine learning methods are deployed in real-world settings such as healthcare, legal systems, and social science, it is crucial to recognize how they shape social biases and stereotypes in these sensitive decision-making processes. Among such re
Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training dataset
Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all machine learning based methods, they are as good as their training data, and can also capture unwanted biases. While ther
Multilingual transformers (XLM, mT5) have been shown to have remarkable transfer skills in zero-shot settings. Most transfer studies, however, rely on automatically translated resources (XNLI, XQuAD), making it hard to discern the particular linguist