ﻻ يوجد ملخص باللغة العربية
We describe a novel application of the end-to-end deep learning technique to the task of discriminating top quark-initiated jets from those originating from the hadronization of a light quark or a gluon. The end-to-end deep learning technique combines deep learning algorithms and low-level detector representation of the high-energy collision event. In this study, we use low-level detector information from the simulated CMS Open Data samples to construct the top jet classifiers. To optimize classifier performance we progressively add low-level information from the CMS tracking detector, including pixel detector reconstructed hits and impact parameters, and demonstrate the value of additional tracking information even when no new spatial structures are added. Relying only on calorimeter energy deposits and reconstructed pixel detector hits, the end-to-end classifier achieves an AUC score of 0.975$pm$0.002 for the task of classifying boosted top quark jets. After adding derived track quantities, the classifier AUC score increases to 0.9824$pm$0.0013, serving as the first performance benchmark for these CMS Open Data samples. We additionally provide a timing performance comparison of different processor unit architectures for training the network.
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemissi
We study jet substructures of a boosted polarized top quark, which undergoes the semileptonic decay $tto bell u$, in the perturbative QCD framework. The jet mass distribution (energy profile) is factorized into the convolution of a hard top-quark dec
We analyse the semileptonic decay of a polarised top-quark with a large velocity based on the perturbative QCD factorisation framework. Thanks to the factorisation and the spin decomposition, the production part and the decay part can be factorised a
Audio classification can distinguish different kinds of sounds, which is helpful for intelligent applications in daily life. However, it remains a challenging task since the sound events in an audio clip is probably multiple, even overlapping. This p
One of the core components of conventional (i.e., non-learned) video codecs consists of predicting a frame from a previously-decoded frame, by leveraging temporal correlations. In this paper, we propose an end-to-end learned system for compressing vi