ﻻ يوجد ملخص باللغة العربية
We investigate the focal plane wavefront sensing technique, known as Phase Diversity, at the scientific focal plane of a segmented mirror telescope with an adaptive optics (AO) system. We specifically consider an optical system imaging a point source in the context of (i) an artificial source within the telescope structure and (ii) from AO-corrected images of a bright star. From our simulations, we reliably disentangle segmented telescope phasing errors from non-common path aberrations (NCPA) for both a theoretical source and on-sky, AO-corrected images where we have simulated the Keck/NIRC2 system. This quantification from on-sky images is appealing, as its sensitive to the cumulative wavefront perturbations of the entire optical train; disentanglement of phasing errors and NCPA is therefore critical, where any potential correction to the primary mirror from an estimate must contain minimal NCPA contributions. Our estimates require a one-minute sequence of short-exposure, AO-corrected images; by exploiting a slight modification to the AO-loop, we find that 75 defocused images produces reliable estimates. We demonstrate a correction from our estimates to the primary and deformable mirror results in a wavefront error reduction of up to 67% and 65% for phasing errors and NCPA, respectively. If the segment phasing errors on the Keck primary are on the order of ~130 nm RMS, we show we can improve the H-band Strehl ratio by up to 10% by using our algorithm. We conclude our technique works well to estimate NCPA alone from on-sky images, suggesting it is a promising method for any AO-system.
Non Common Path Aberrations (NCPA) are often considered as a critical issue in Adaptive Optics (AO) systems, since they introduce bias errors between real wavefronts propagating to the science detectors and those measured by the Wavefront Sensor (WFS
The two main advantages of exoplanet imaging are the discovery of objects in the outer part of stellar systems -- constraining models of planet formation --, and its ability to spectrally characterize the planets -- information on their atmosphere. I
This paper introduces an analytical method to calculate segment-level wavefront error tolerances in order to enable the detection of faint extra-solar planets using segmented telescopes in space. This study provides a full treatment of spatially unco
Circumstellar environments are now routinely observed by dedicated high-contrast imagers on large, ground-based observatories. These facilities combine extreme adaptive optics and coronagraphy to achieve unprecedented sensitivities for exoplanet dete
The major noise source limiting high-contrast imaging is due to the presence of quasi-static speckles. Speckle noise originates from wavefront errors caused by various independent sources, and it evolves on different timescales pending to their natur