ﻻ يوجد ملخص باللغة العربية
Circumstellar environments are now routinely observed by dedicated high-contrast imagers on large, ground-based observatories. These facilities combine extreme adaptive optics and coronagraphy to achieve unprecedented sensitivities for exoplanet detection and spectral characterization. However, non-common path aberrations (NCPA) in these coronagraphic systems represent a critical limitation for the detection of giant planets with a contrast lower than a few $10^{-6}$ at very small separations ($<$0.3$^{primeprime}$) from their host star. In 2013 we proposed ZELDA, a Zernike wavefront sensor to measure these residual quasi-static phase aberrations and a prototype was installed in SPHERE, the exoplanet imager for the VLT. In 2016, we demonstrated the ability of our sensor to provide a nanometric calibration and compensation for these aberrations on an internal source in the instrument, resulting in a contrast gain of 10 at 0.2$^{primeprime}$ in coronagraphic images. However, initial on-sky tests in 2017 did not show a tangible gain in contrast when calibrating the NCPA internally and then applying the correction on sky. In this communication, we present recent on-sky measurements to demonstrate the potential of our sensor for the NCPA compensation during observations and quantify the contrast gain in coronagraphic data.
Second-generation exoplanet imagers using extreme adaptive optics and coronagraphy have demonstrated their great potential for studying close circumstellar environments and for detecting new companions and helping to understand their physical propert
Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments on large, ground-based observatories. These facilities include extreme adaptive optics (Ex
Segmented aperture telescopes require an alignment procedure with successive steps from coarse alignment to monitoring process in order to provide very high optical quality images for stringent science operations such as exoplanet imaging. The final
The Gemini Planet Imager (GPI) entered on-sky commissioning phase, and had its First Light at the Gemini South telescope in November 2013. Meanwhile, the fast loops for atmospheric correction of the Extreme Adaptive Optics (XAO) system have been clos
Non Common Path Aberrations (NCPA) are often considered as a critical issue in Adaptive Optics (AO) systems, since they introduce bias errors between real wavefronts propagating to the science detectors and those measured by the Wavefront Sensor (WFS