ترغب بنشر مسار تعليمي؟ اضغط هنا

Fifth-Force Screening around Extremely Compact Sources

138   0   0.0 ( 0 )
 نشر من قبل Ben Thrussell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many non-linear scalar field theories possess a screening mechanism that can suppress any associated fifth force in dense environments. As a result, these theories can evade local experimental tests of new forces. Chameleon-like screening, which occurs because of non-linearities in the scalar potential or the coupling to matter, is well understood around extended objects. However, many experimental tests of these theories involve objects with spatial extent much smaller than the scalar fields Compton wavelength, and which could therefore be considered point-like. In this work, we determine how the fifth forces are screened in the limit that the source objects become extremely compact.



قيم البحث

اقرأ أيضاً

Light bosonic fields mediate long range forces between objects. If these fields have self-interactions, i.e., non-quadratic terms in the potential, the experimental constraints on such forces can be drastically altered due to a screening (chameleon) or enhancement effect. We explore how technically natural values for such self-interaction coupling constants modify the existing constraints. We point out that assuming the existence of these natural interactions leads to new constraints, contrary to the usual expectation that screening leads to gaps in coverage. We discuss how screening can turn fundamentally equivalence principle (EP)-preserving forces into EP-violating ones. This means that when natural screening is present, searches for EP violation can be used to constrain EP-preserving forces. We show how this effect enables the recently discovered stellar triple system textit{PSR J0337$+$1715} to place a powerful constraint on EP-preserving fifth forces. Finally, we demonstrate that technically natural cubic self-interactions modify the vacuum structure of the scalar potential, leading to new constraints from spontaneous and induced vacuum decay.
We study for the first time the possibility of probing long-range fifth forces utilizing asteroid astrometric data, via the fifth force-induced orbital precession. We examine nine Near-Earth Object (NEO) asteroids whose orbital trajectories are accur ately determined via optical and radar astrometry. Focusing on a Yukawa-type potential mediated by a new gauge field (dark photon) or a baryon-coupled scalar, we estimate the sensitivity reach for the fifth-force coupling strength and mediator mass in the mass range $m simeq 10^{-21}-10^{-15},{rm eV}$. Our estimated sensitivity is comparable to leading limits from torsion balance experiments, potentially exceeding these in a specific mass range. The fifth forced-induced precession increases with the orbital semi-major axis in the small $m$ limit, motivating the study of objects further away from the Sun. We discuss future exciting prospects for extending our study to more than a million asteroids (including NEOs, main-belt asteroids, Hildas, and Jupiter Trojans), as well as trans-Neptunian objects and exoplanets.
We study different phenomenological signatures associated with new spin-2 particles. These new degrees of freedom, that we call hidden gravitons, arise in different high-energy theories such as extra-dimensional models or extensions of General Relati vity. At low energies, hidden gravitons can be generally described by the Fierz-Pauli Lagrangian. Their phenomenology is parameterized by two dimensionful constants: their mass and their coupling strength. In this work, we analyze two different sets of constraints. On the one hand, we study potential deviations from the inverse-square law on solar-system and laboratory scales. To extend the constraints to scales where the laboratory probes are not competitive, we also study consequences on astrophysical objects. We analyze in detail the processes that may take place in stellar interiors and lead to emission of hidden gravitons, acting like an additional source of energy loss.
The Vainshtein screening mechanism relies on nonlinear interaction terms becoming dominant close to a compact source. However, theories displaying this mechanism are generally understood to be low-energy theories: it is unclear that operators emergin g from UV completion do not interfere with terms inducing Vainshtein screening. In this work, we find a set of interacting massive Galileon theories that exhibit Vainshtein screening; examining potential UV completions of these theories, we determine that the screening does not survive the extension. We find that neglecting operators when integrating out a heavy field is non-trivial, and either care must be taken to ensure that omitted terms are small for the whole domain, or one is forced to work solely with the UV theory. We also comment on massive deformations of the familiar Wess-Zumino Galileons.
We revisit the possibility that the Planck mass is spontaneously generated in scale invariant scalar-tensor theories of gravity, typically leading to a dilaton. The fifth force, arising from the dilaton, is severely constrained by astrophysical measu rements. We explore the possibility that nature is fundamentally Weyl-scale invariant and argue that, as a consequence, the fifth force effects are dramatically suppressed and such models are viable. We discuss possible obstructions to maintaining scale invariance and how these might be resolved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا