ترغب بنشر مسار تعليمي؟ اضغط هنا

Consequences of Fine-Tuning for Fifth Force Searches

80   0   0.0 ( 0 )
 نشر من قبل Sebastian Ellis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light bosonic fields mediate long range forces between objects. If these fields have self-interactions, i.e., non-quadratic terms in the potential, the experimental constraints on such forces can be drastically altered due to a screening (chameleon) or enhancement effect. We explore how technically natural values for such self-interaction coupling constants modify the existing constraints. We point out that assuming the existence of these natural interactions leads to new constraints, contrary to the usual expectation that screening leads to gaps in coverage. We discuss how screening can turn fundamentally equivalence principle (EP)-preserving forces into EP-violating ones. This means that when natural screening is present, searches for EP violation can be used to constrain EP-preserving forces. We show how this effect enables the recently discovered stellar triple system textit{PSR J0337$+$1715} to place a powerful constraint on EP-preserving fifth forces. Finally, we demonstrate that technically natural cubic self-interactions modify the vacuum structure of the scalar potential, leading to new constraints from spontaneous and induced vacuum decay.



قيم البحث

اقرأ أيضاً

Many non-linear scalar field theories possess a screening mechanism that can suppress any associated fifth force in dense environments. As a result, these theories can evade local experimental tests of new forces. Chameleon-like screening, which occu rs because of non-linearities in the scalar potential or the coupling to matter, is well understood around extended objects. However, many experimental tests of these theories involve objects with spatial extent much smaller than the scalar fields Compton wavelength, and which could therefore be considered point-like. In this work, we determine how the fifth forces are screened in the limit that the source objects become extremely compact.
Classical scale invariance represents a promising framework for model building beyond the Standard Model. However, once coupled to gravity, any scale-invariant microscopic model requires an explanation for the origin of the Planck mass. In this paper , we provide a minimal example for such a mechanism and show how the Planck mass can be dynamically generated in a strongly coupled gauge sector. We consider the case of hidden SU(N_c) gauge interactions that link the Planck mass to the condensation of a scalar bilinear operator that is nonminimally coupled to curvature. The effective theory at energies below the Planck mass contains two scalar fields: the pseudo-Nambu--Goldstone boson of spontaneously broken scale invariance (the dilaton) and a gravitational scalar degree of freedom that originates from the R^2 term in the effective action (the scalaron). We compute the effective potential for the coupled dilaton-scalaron system at one-loop order and demonstrate that it can be used to successfully realize a stage of slow-roll inflation in the early Universe. Remarkably enough, our predictions for the primordial scalar and tensor power spectra interpolate between those of standard R^2 inflation and linear chaotic inflation. For comparatively small gravitational couplings, we thus obtain a spectral index n_s ~= 0.97 and a tensor-to-scalar ratio as large as r ~= 0.08.
The observation of gravitational waves from a binary neutron star merger by LIGO/VIRGO and the associated electromagnetic counterpart provides a high precision test of orbital dynamics, and therefore a new and sensitive probe of extra forces and new radiative degrees of freedom. Axions are one particularly well-motivated class of extensions to the Standard Model leading to new forces and sources of radiation, which we focus on in this paper. Using an effective field theory (EFT) approach, we calculate the first post-Newtonian corrections to the orbital dynamics, radiated power, and gravitational waveform for binary neutron star mergers in the presence of an axion. This result is applicable to many theories which add an extra massive scalar degree of freedom to General Relativity. We then perform a detailed forecast of the potential for Advanced LIGO to constrain the free parameters of the EFT, and map these to the mass $m_a$ and decay constant $f_a$ of the axion. At design sensitivity, we find that Advanced LIGO can potentially exclude axions with $m_a lesssim 10^{-11} {rm eV}$ and $f_a sim (10^{14} - 10^{17}) {rm GeV}$. There are a variety of complementary observational probes over this region of parameter space, including the orbital decay of binary pulsars, black hole superradiance, and laboratory searches. We comment on the synergies between these various observables.
We study for the first time the possibility of probing long-range fifth forces utilizing asteroid astrometric data, via the fifth force-induced orbital precession. We examine nine Near-Earth Object (NEO) asteroids whose orbital trajectories are accur ately determined via optical and radar astrometry. Focusing on a Yukawa-type potential mediated by a new gauge field (dark photon) or a baryon-coupled scalar, we estimate the sensitivity reach for the fifth-force coupling strength and mediator mass in the mass range $m simeq 10^{-21}-10^{-15},{rm eV}$. Our estimated sensitivity is comparable to leading limits from torsion balance experiments, potentially exceeding these in a specific mass range. The fifth forced-induced precession increases with the orbital semi-major axis in the small $m$ limit, motivating the study of objects further away from the Sun. We discuss future exciting prospects for extending our study to more than a million asteroids (including NEOs, main-belt asteroids, Hildas, and Jupiter Trojans), as well as trans-Neptunian objects and exoplanets.
We study different phenomenological signatures associated with new spin-2 particles. These new degrees of freedom, that we call hidden gravitons, arise in different high-energy theories such as extra-dimensional models or extensions of General Relati vity. At low energies, hidden gravitons can be generally described by the Fierz-Pauli Lagrangian. Their phenomenology is parameterized by two dimensionful constants: their mass and their coupling strength. In this work, we analyze two different sets of constraints. On the one hand, we study potential deviations from the inverse-square law on solar-system and laboratory scales. To extend the constraints to scales where the laboratory probes are not competitive, we also study consequences on astrophysical objects. We analyze in detail the processes that may take place in stellar interiors and lead to emission of hidden gravitons, acting like an additional source of energy loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا