ﻻ يوجد ملخص باللغة العربية
Recently, Adiceam, Beresnevich, Levesley, Velani and Zorin proved a quantitative version of the convergence case of the Khintchine-Groshev theorem for nondegenerate manifolds, motivated by applications to interference alignment. In the present paper, we obtain analogues of their results for affine subspaces.
We prove the convergence and divergence cases of an inhomogeneous Khintchine-Groshev type theorem for dual approximation restricted to affine subspaces in $mathbb{R} ^n$. The divergence results are proved in the more general context of Hausdorff measures.
In this paper we study a family of limsup sets that are defined using iterated function systems. Our main result is an analogue of Khintchines theorem for these sets. We then apply this result to the topic of intrinsic Diophantine Approximation on se
Diophantine approximation is traditionally the study of how well real numbers are approximated by rationals. We propose a model for studying Diophantine approximation in an arbitrary totally bounded metric space where the rationals are replaced with
A {it two-dimensional continued fraction expansion} is a map $mu$ assigning to every $x inmathbb R^2setminusmathbb Q^2$ a sequence $mu(x)=T_0,T_1,dots$ of triangles $T_n$ with vertices $x_{ni}=(p_{ni}/d_{ni},q_{ni}/d_{ni})inmathbb Q^2, d_{ni}>0, p_
In 2004, J.C. Tong found bounds for the approximation quality of a regular continued fraction convergent of a rational number, expressed in bounds for both the previous and next approximation. We sharpen his results with a geometric method and give b