ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated Design Space Exploration of CGRA Processing Element Architectures using Frequent Subgraph Analysis

221   0   0.0 ( 0 )
 نشر من قبل Kathleen Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The architecture of a coarse-grained reconfigurable array (CGRA) processing element (PE) has a significant effect on the performance and energy efficiency of an application running on the CGRA. This paper presents an automated approach for generating specialized PE architectures for an application or an application domain. Frequent subgraphs mined from a set of applications are merged to form a PE architecture specialized to that application domain. For the image processing and machine learning domains, we generate specialized PEs that are up to 10.5x more energy efficient and consume 9.1x less area than a baseline PE.



قيم البحث

اقرأ أيضاً

404 - Jia Yu , Wei Wu , Xi Chen 2007
With the scaling of technology and higher requirements on performance and functionality, power dissipation is becoming one of the major design considerations in the development of network processors. In this paper, we use an assertion-based methodolo gy for system-level power/performance analysis to study two dynamic voltage scaling (DVS) techniques, traffic-based DVS and execution-based DVS, in a network processor model. Using the automatically generated distribution analyzers, we analyze the power and performance distributions and study their trade-offs for the two DVS policies with different parameter settings such as threshold values and window sizes. We discuss the optimal configurations of the two DVS policies under different design requirements. By a set of experiments, we show that the assertion-based trace analysis methodology is an efficient tool that can help a designer easily compare and study optimal architectural configurations in a large design space.
424 - Shaoshan Liu , Yuhao Zhu , Bo Yu 2021
The commercialization of autonomous machines is a thriving sector, and likely to be the next major computing demand driver, after PC, cloud computing, and mobile computing. Nevertheless, a suitable computer architecture for autonomous machines is mis sing, and many companies are forced to develop ad hoc computing solutions that are neither scalable nor extensible. In this article, we analyze the demands of autonomous machine computing, and argue for the promise of dataflow architectures in autonomous machines.
Multi-objective optimization is a crucial matter in computer systems design space exploration because real-world applications often rely on a trade-off between several objectives. Derivatives are usually not available or impractical to compute and th e feasibility of an experiment can not always be determined in advance. These problems are particularly difficult when the feasible region is relatively small, and it may be prohibitive to even find a feasible experiment, let alone an optimal one. We introduce a new methodology and corresponding software framework, HyperMapper 2.0, which handles multi-objective optimization, unknown feasibility constraints, and categorical/ordinal variables. This new methodology also supports injection of the user prior knowledge in the search when available. All of these features are common requirements in computer systems but rarely exposed in existing design space exploration systems. The proposed methodology follows a white-box model which is simple to understand and interpret (unlike, for example, neural networks) and can be used by the user to better understand the results of the automatic search. We apply and evaluate the new methodology to the automatic static tuning of hardware accelerators within the recently introduced Spatial programming language, with minimization of design run-time and compute logic under the constraint of the design fitting in a target field-programmable gate array chip. Our results show that HyperMapper 2.0 provides better Pareto fronts compared to state-of-the-art baselines, with better or competitive hypervolume indicator and with 8x improvement in sampling budget for most of the benchmarks explored.
Coarse-grained reconfigurable architectures (CGRAs) are programmable logic devices with large coarse-grained ALU-like logic blocks, and multi-bit datapath-style routing. CGRAs often have relatively restricted data routing networks, so they attract CA D mapping tools that use exact methods, such as Integer Linear Programming (ILP). However, tools that target general architectures must use large constraint systems to fully describe an architectures flexibility, resulting in lengthy run-times. In this paper, we propose to derive connectivity information from an otherwise generic device model, and use this to create simpler ILPs, which we combine in an iterative schedule and retain most of the exactness of a fully-generic ILP approach. This new approach has a speed-up geometric mean of 5.88x when considering benchmarks that do not hit a time-limit of 7.5 hours on the fully-generic ILP, and 37.6x otherwise. This was measured using the set of benchmarks used to originally evaluate the fully-generic approach and several more benchmarks representing computation tasks, over three different CGRA architectures. All run-times of the new approach are less than 20 minutes, with 90th percentile time of 410 seconds. The proposed mapping techniques are integrated into, and evaluated using the open-source CGRA-ME architecture modelling and exploration framework.
Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC---called a Tensor Processing Unit (TPU)---deployed in datacenters since 2015 that accelerates t he inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPUs deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs (caches, out-of-order execution, multithreading, multiprocessing, prefetching, ...) that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X - 30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X - 80X higher. Moreover, using the GPUs GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا