ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Dark Matter with Milky Way substructure

260   0   0.0 ( 0 )
 نشر من قبل Michael Kuhlen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Kuhlen




اسأل ChatGPT حول البحث

The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.



قيم البحث

اقرأ أيضاً

The growing trove of precision astrometric observations from the Gaia space telescope and other surveys is revealing the structure and dynamics of the Milky Way in ever more exquisite detail. We summarize the current status of our understanding of th e structure and the characteristics of the Milky Way, and we review the emerging picture: the Milky Way is evolving through interactions with the massive satellite galaxies that stud its volume, with evidence pointing to a cataclysmic past. It is also woven with stellar streams, and observations of streams, satellites, and field stars offer new constraints on its dark matter, both on its spatial distribution and its fundamental nature. The recent years have brought much focus to the study of dwarf galaxies found within our Galaxys halo and their internal matter distributions. In this review, we focus on the predictions of the cold dark matter paradigm at small mass scales through precision astrometric measurements, and we summarize the modern consensus on the extent to which small-scale probes are consistent with this paradigm. We note the discovery prospects of these studies, and also how they intertwine with probes of the dynamics and evolution of the Milky Way in various and distinct ways.
With the increasing numbers of large stellar survey projects, the quality and quantity of excellent tracers to study the Milky Way is rapidly growing, one of which is the classical Cepheids. Classical Cepheids are high precision standard candles with very low typical uncertainties ($<$ 3%) available via the mid-infrared period-luminosity relation. About 3500 classical Cepheids identified from OGLE, ASAS-SN, Gaia, WISE and ZTF survey data have been analyzed in this work, and their spatial distributions show a clear signature of Galactic warp. Two kinematical methods are adopted to measure the Galactic rotation curve in the Galactocentric distance range of $4lesssim R_{rm GC} lesssim 19$ kpc. Gently declining rotation curves are derived by both the proper motion (PM) method and 3-dimensional velocity vector (3DV) method. The largest sample of classical Cepheids with most accurate 6D phase-space coordinates available to date are modeled in the 3DV method, and the resulting rotation curve is found to decline at the relatively smaller gradient of ($-1.33pm0.1$) ${rm km,s^{-1},kpc^{-1}}$. Comparing to results from the PM method, a higher rotation velocity (($232.5pm0.83$) ${rm km,s^{-1}}$) is derived at the position of Sun in the 3DV method. The virial mass and local dark matter density are estimated from the 3DV method which is the more reliable method, $M_{rm vir} = (0.822pm0.052)times 10^{12},M_odot$ and $rho_{rm DM,odot} = 0.33pm0.03$ GeV ${rm cm^{-3}}$, respectively.
Cold Dark Matter (CDM) theory, a pillar of modern cosmology and astrophysics, predicts the existence of a large number of starless dark matter halos surrounding the Milky Way (MW). However, clear observational evidence of these dark substructures rem ains elusive. Here, we present a detection method based on the small, but detectable, velocity changes that an orbiting substructure imposes on the stars in the MW disk. Using high-resolution numerical simulations we estimate that the new space telescope Gaia should detect the kinematic signatures of a few starless substructures provided the CDM paradigm holds. Such a measurement will provide unprecedented constraints on the primordial matter power spectrum at low-mass scales and offer a new handle onto the particle physics properties of dark matter.
Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic a nd SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section $sigma/m$. We compare the shape of the main dark matter (DM) halo at redshift $z=0$ predicted by SIDM simulations (at $sigma/m=0.1$, $1$, and $10$ cm$^2$ g$^{-1}$) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on $sigma/m$. This transition could potentially be used to set limits on the SIDM cross-section in the MW.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi lar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا