ﻻ يوجد ملخص باللغة العربية
Astronomers require efficient automated detection and classification pipelines when conducting large-scale surveys of the (optical) sky for variable and transient sources. Such pipelines are fundamentally important, as they permit rapid follow-up and analysis of those detections most likely to be of scientific value. We therefore present a deep learning pipeline based on the convolutional neural network architecture called $texttt{MeerCRAB}$. It is designed to filter out the so called bogus detections from true astrophysical sources in the transient detection pipeline of the MeerLICHT telescope. Optical candidates are described using a variety of 2D images and numerical features extracted from those images. The relationship between the input images and the target classes is unclear, since the ground truth is poorly defined and often the subject of debate. This makes it difficult to determine which source of information should be used to train a classification algorithm. We therefore used two methods for labelling our data (i) thresholding and (ii) latent class model approaches. We deployed variants of $texttt{MeerCRAB}$ that employed different network architectures trained using different combinations of input images and training set choices, based on classification labels provided by volunteers. The deepest network worked best with an accuracy of 99.5$%$ and Matthews correlation coefficient (MCC) value of 0.989. The best model was integrated to the MeerLICHT transient vetting pipeline, enabling the accurate and efficient classification of detected transients that allows researchers to select the most promising candidates for their research goals.
Efficient automated detection of flux-transient, reoccurring flux-variable, and moving objects is increasingly important for large-scale astronomical surveys. We present braai, a convolutional-neural-network, deep-learning real/bogus classifier desig
The advancement of technology has resulted in a rapid increase in supernova (SN) discoveries. The Subaru/Hyper Suprime-Cam (HSC) transient survey, conducted from fall 2016 through spring 2017, yielded 1824 SN candidates. This gave rise to the need fo
We live in momentous times. The science community is empowered with an arsenal of cosmic messengers to study the Universe in unprecedented detail. Gravitational waves, electromagnetic waves, neutrinos and cosmic rays cover a wide range of wavelengths
Large-scale sky surveys have played a transformative role in our understanding of astrophysical transients, only made possible by increasingly powerful machine learning-based filtering to accurately sift through the vast quantities of incoming data g
Machine learning techniques are widely applied in many modern optical sky surveys, e.q. Pan-STARRS1, PTF/iPTF and Subaru/Hyper Suprime-Cam survey, to reduce human intervention for data verification. In this study, we have established a machine learni