ﻻ يوجد ملخص باللغة العربية
We consider 1D integrable systems supporting ballistic propagation of quasiparticles, perturbed by a localised defect that breaks most conservation laws and induces chaotic dynamics. We study an out-of-equilibrium protocol engineered activating the defect in an initially homogeneous and far from the equilibrium state. We find that large enough defects induce full thermalisation at their center, but nonetheless the outgoing flow of carriers emerging from the defect is non-thermal due to a generalization of the celebrated Boundary Thermal Resistance effect, occurring at the edges of the chaotic region. Our results are obtained combining ab-initio numerical simulations for relatively small-sized defects, with the solution of the Boltzmann equation, which becomes exact in the scaling limit of large, but weak defects.
We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functio
We discuss the origin of topological defects in phase transitions and analyze their role as a diagnostic tool in the study of the non-equilibrium dynamics of symmetry breaking. Homogeneous second order phase transitions are the focus of our attention
We calculate in detail the Renyi entanglement entropies of cTPQ states as a function of subsystem volume, filling the details of our prior work [Nature Communications 9, 1635 (2018)], where the formulas were first presented. Working in a limit of lar
We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear
Using a Wigner function based approach, we study the Renyi entropy of a subsystem $A$ of a system of Bosons interacting with a local repulsive potential. The full system is assumed to be in thermal equilibrium at a temperature $T$ and density $rho$.