ﻻ يوجد ملخص باللغة العربية
Fidelity approach has been widely used to detect various types of quantum phase transitions, including some that are beyond the Landau symmetry breaking theory, in condensed matter models. However, challenges remain in locating the transition points with precision in several models with unconventional phases such as the quantum spin liquid phase in spin-1 Kitaev-Heisenberg model. In this work, we propose a novel approach, which we named the fidelity map, to detect quantum phase transitions with higher accuracy and sensitivity as compared to the conventional fidelity measures. Our scheme extends the fidelity concept from a single dimension quantity to a multi-dimensional quantity, and use a meta-heuristic algorithm to search for the critical points that globally maximized the fidelity within each phase. We test the scheme in three interacting condensed matter models, namely the spin-1 Kitaev Heisenberg model which consists of the quantum spin liquid phase and the topological Haldane phase, the spin-1/2 XXZ model which possesses a Berezinskii-Kosterlitz-Thouless transition, and the Su-Schrieffer-Heeger model that exhibits a topological quantum phase transition. The result shows that the fidelity map can capture a wide range of phase transitions accurately, thus providing a new tool to study phase transitions in unseen models without prior knowledge of the systems symmetry.
We present some aspects of the fidelity approach to phase transitions based on lower and upper bounds on the fidelity susceptibility that are expressed in terms of thermodynamic quantities. Both commutative and non commutative cases are considered. I
We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two types of second-order thermal p
We use a recently proposed class of tensor-network states to study phase transitions in string-net models. These states encode the genuine features of the string-net condensate such as, e.g., a nontrivial perimeter law for Wilson loops expectation va
Several experimental and theoretical studies indicate the existence of a critical point separating the underdoped and overdoped regions of the high-T_c cuprates phase diagram. There are at least two distinct proposals on the critical concentration an
A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this