ﻻ يوجد ملخص باللغة العربية
The article is focused on research of an attack on the quantum key distribution system and proposes a countermeasure method. Particularly noteworthy is that this is not a classic attack on a quantum protocol. We describe an attack on the process of calibration. Results of the research show that quantum key distribution systems have vulnerabilities not only in the protocols, but also in other vital system components. The described type of attack does not affect the cryptographic strength of the received keys and does not point to the vulnerability of the quantum key distribution protocol. We also propose a method for autocompensating optical communication system development, which protects synchronization from unauthorized access. The proposed method is based on the use of sync pulses attenuated to a photon level in the process of detecting a time interval with a signal. The paper presents the results of experimental studies that show the discrepancies between the theoretical and real parameters of the system. The obtained data allow the length of the quantum channel to be calculated with high accuracy.
We present a method to control the detection events in quantum key distribution systems that use gated single-photon detectors. We employ bright pulses as faked states, timed to arrive at the avalanche photodiodes outside the activation time. The att
In this paper we present the quantum control attack on quantum key distribution systems. The cornerstone of the attack is that Eve can use unitary (polar) decomposition of her positive-operator valued measure elements, which allows her to realize the
We discuss a simple search problem which can be pursued with different methods, either on a classical or on a quantum basis. The system is represented by a chain of trapped ions. The ion to be searched is a member of that chain, consists, however, of
While quantum mechanics exquisitely describes the behavior of microscopic systems, one ongoing challenge is to explore its applicability to systems of larger size and mass. Unfortunately, quantum states of increasingly macroscopic objects are more ea
In real-life implementations of quantum key distribution (QKD), the physical systems with unwanted imperfections would be exploited by an eavesdropper. Based on imperfections in the detectors, detector control attacks have been successfully launched