ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Imaging of Exoplanets Beyond the Radial Velocity Limit: Application to the HD 134987 System

105   0   0.0 ( 0 )
 نشر من قبل Zhexing Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future direct imaging missions will primarily observe planets that have been previously detected, mostly via the radial velocity (RV) technique, to characterize planetary atmospheres. In the meantime, direct imaging may discover new planets within existing planetary systems that have bright enough reflected flux, yet with insufficient signals for other methods to detect. Here, we investigate the parameter space within which planets are unlikely to be detected by RV in the near future due to precision limitations, but could be discovered through reflected light with future direct imaging missions. We use the HD 134987 system as a working example, combine RV and direct imaging detection limit curves in the same parameter space through various assumptions, and insert a fictitious planet into the system while ensuring it lies between the RV and imaging detection limits. Planet validity tested through dynamical simulations and retrieval tests revealed that the planet could indeed be detected by imaging while remaining hidden from RV surveys. Direct imaging retrieval was carried out using starshade simulations for two mission concepts: the Starshade Rendezvous Probe that could be coupled with the Nancy Grace Roman Space Telescope, and the Habitable Exoplanet Observatory. This method is applicable to any other systems and high contrast direct imaging instruments, and could help inform future imaging observations and data analysis on the discovery of new exoplanets.

قيم البحث

اقرأ أيضاً

High contrast imaging enables the determination of orbital parameters for substellar companions (planets, brown dwarfs) from the observed relative astrometry and the estimation of model and age-dependent masses from their observed magnitudes or spect ra. Combining astrometric positions with radial velocity gives direct constraints on the orbit and on the dynamical masses of companions. A brown dwarf was discovered with the VLT/SPHERE instrument in 2017, which orbits at $sim$ 11 au around HD 206893. Its mass was estimated between 12 and 50 $M_{Jup}$ from evolutionary models and its photometry. However, given the significant uncertainty on the age of the system and the peculiar spectrophotometric properties of the companion, this mass is not well constrained. We aim at constraining the orbit and dynamical mass of HD 206893 B. We combined radial velocity data obtained with HARPS spectra and astrometric data obtained with the high contrast imaging VLT/SPHERE and VLT/NaCo instruments, with a time baseline less than three years. We then combined those data with astrometry data obtained by Hipparcos and Gaia with a time baseline of 24 years. We used a MCMC approach to estimate the orbital parameters and dynamical mass of the brown dwarf from those data. We infer a period between 21 and 33{deg} and an inclination in the range 20-41{deg} from pole-on from HD 206893 B relative astrometry. The RV data show a significant RV drift over 1.6 yrs. We show that HD 206893 B cannot be the source of this observed RV drift as it would lead to a dynamical mass inconsistent with its photometry and spectra and with Hipparcos and Gaia data. An additional inner (semimajor axis in the range 1.4-2.6 au) and massive ($sim$ 15 $M_{Jup}$) companion is needed to explain the RV drift, which is compatible with the available astrometric data of the star, as well as with the VLT/SPHERE and VLT/NaCo nondetection.
The hot Jupiter HD 217107 b was one of the first exoplanets detected using the radial velocity (RV) method, originally reported in the literature in 1999. Today, precise RV measurements of this system span more than 20 years, and there is clear evide nce for a longer-period companion, HD 217107 c. Interestingly, both the short-period planet ($P_mathrm{b}sim7.13$ d) and long-period planet ($P_mathrm{c}sim5059$ d) have significantly eccentric orbits ($e_mathrm{b}sim0.13$ and $e_mathrm{c}sim0.40$). We present 42 additional RV measurements of this system obtained with the MINERVA telescope array and carry out a joint analysis with previously published RV measurements from four different facilities. We confirm and refine the previously reported orbit of the long-period companion. HD 217107 b is one of a relatively small number of hot Jupiters with an eccentric orbit, opening up the possibility of detecting precession of the planetary orbit due to General Relativistic effects and perturbations from other planets in the system. In this case, the argument of periastron, $omega$, is predicted to change at the level of $sim$0.8$^circ$ century$^{-1}$. Despite the long time baseline of our observations and the high quality of the RV measurements, we are only able to constrain the precession to be $dot{omega}<65.9^circ$ century$^{-1}$. We discuss the limitations of detecting the subtle effects of precession in exoplanet orbits using RV data.
Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-M cLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planets spectral line profiles resulting in an anomaly in the planets radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.
We present the first scattered light detections of the HD 106906 debris disk using Gemini/GPI in the infrared and HST/ACS in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius $sim$50 AU, and an outer extent $>$500 AU. The HST data show the outer regions are highly asymmetric, resembling the needle morphology seen for the HD 15115 debris disk. The planet candidate is oriented $sim$21$deg$ away from the position angle of the primarys debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primarys disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.
Detecting exoplanets around giant stars sheds light on the later-stage evolution of planetary systems. We observed the M giant HD 18438 and the K giant HD 158996 as part of a Search for Exoplanets around Northern circumpolar Stars (SENS) and obtained 38 and 24 spectra from 2010 to 2017 using the high-resolution Bohyunsan Observatory Echelle Spectrograph (BOES) at the 1.8m telescope of Bohyunsan Optical Astronomy Observatory in Korea. We obtained precise RV measurements from the spectra and found long-period radial velocity (RV) variations with period 719.0 days for HD 18438 and 820.2 days for HD 158996. We checked the chromospheric activities using Ca ii H and H_alpha lines, HIPPARCOS photometry and line bisectors to identify the origin of the observed RV variations. In the case of HD 18438, we conclude that the observed RV variations with period 719.0 days are likely to be caused by the pulsations because the periods of HIPPARCOS photometric and H alpha EW variations for HD 18438 are similar to that of RV variations in Lomb-Scargle periodogram, and there are no correlations between bisectors and RV measurements. In the case of HD 158996, on the other hand, we did not find any similarity in the respective periodograms nor any correlation between RV variations and line bisector variations. In addition, the probability that the real rotational period can be as longer than the RV period for HD 158996 is only about 4.3%. Thus we conclude that observed RV variations with a period of 820.2 days of HD 158996 are caused by a planetary companion, which has the minimum mass of 14.0 MJup, the semi-major axis of 2.1 AU, and eccentricity of 0.13 assuming the stellar mass of 1.8 M_sun. HD 158996 is so far one of the brightest and largest stars to harbor an exoplanet candidate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا