ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial velocity eclipse mapping of exoplanets

177   0   0.0 ( 0 )
 نشر من قبل Nikolay Nikolov K
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planets spectral line profiles resulting in an anomaly in the planets radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.



قيم البحث

اقرأ أيضاً

191 - F. Bouchy , C. Moutou , D. Queloz 2009
Radial Velocity follow-up is essential to establish or exclude the planetary nature of a transiting companion as well as to accurately determine its mass. Here we present some elements of an efficient Doppler follow-up strategy, based on high-resolut ion spectroscopy, devoted to the characterization of transiting candidates. Some aspects and results of the radial velocity follow-up of the CoRoT space mission are presented in order to illustrate the strategy used to deal with the zoo of transiting candidates.
The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to exoplanets makes it impossible to resolve their disk with current or near-term technology. It is s till possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times---this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.
Future direct imaging missions will primarily observe planets that have been previously detected, mostly via the radial velocity (RV) technique, to characterize planetary atmospheres. In the meantime, direct imaging may discover new planets within ex isting planetary systems that have bright enough reflected flux, yet with insufficient signals for other methods to detect. Here, we investigate the parameter space within which planets are unlikely to be detected by RV in the near future due to precision limitations, but could be discovered through reflected light with future direct imaging missions. We use the HD 134987 system as a working example, combine RV and direct imaging detection limit curves in the same parameter space through various assumptions, and insert a fictitious planet into the system while ensuring it lies between the RV and imaging detection limits. Planet validity tested through dynamical simulations and retrieval tests revealed that the planet could indeed be detected by imaging while remaining hidden from RV surveys. Direct imaging retrieval was carried out using starshade simulations for two mission concepts: the Starshade Rendezvous Probe that could be coupled with the Nancy Grace Roman Space Telescope, and the Habitable Exoplanet Observatory. This method is applicable to any other systems and high contrast direct imaging instruments, and could help inform future imaging observations and data analysis on the discovery of new exoplanets.
Radial velocity (RV) surveys have detected hundreds of exoplanets through their gravitational interactions with their host stars. Some will be transiting, but most lack sufficient follow-up observations to confidently detect (or rule out) transits. W e use published stellar, orbital, and planetary parameters to estimate the transit probabilities for nearly all exoplanets that have been discovered via the RV method. From these probabilities, we predict that $25.5^{+0.7}_{-0.7}$ of the known RV exoplanets should transit their host stars. This prediction is more than double the amount of RV exoplanets that are currently known to transit. The Transiting Exoplanet Survey Satellite (TESS) presents a valuable opportunity to explore the transiting nature of many of the known RV exoplanet systems. Based on the anticipated pointing of TESS during its two-year primary mission, we identify the known RV exoplanets that it will observe and predict that $11.7^{+0.3}_{-0.3}$ of them will have transits detected by TESS. However, we only expect the discovery of transits for $sim$3 of these exoplanets to be novel (i.e., not previously known). We predict that the TESS photometry will yield dispositive null results for the transits of $sim$125 RV exoplanets. This will represent a substantial increase in the effort to refine ephemerides of known RV exoplanets. We demonstrate that these results are robust to changes in the ecliptic longitudes of future TESS observing sectors. Finally, we consider how several potential TESS extended mission scenarios affect the number of transiting RV exoplanets we expect TESS to observe.
A planets emission spectrum contains information about atmospheric composition and structure. We compare the Bayesian Information Criterion (BIC) of blackbody fits and idealized spectral retrieval fits for the 44 planets with published eclipse measur ements in multiple thermal wavebands, mostly obtained with the Spitzer Space Telescope. The evidence for spectral features depends on eclipse depth uncertainties. Spitzer has proven capable of eclipse precisions better than 1E-4 when multiple eclipses are analyzed simultaneously, but this feat has only been performed four times. It is harder to self-calibrate photometry when a single occultation is reduced and analyzed in isolation; we find that such measurements have not passed the test of repeatability. Single-eclipse measurements either have an uncertainty floor of 5E-4, or their uncertainties have been underestimated by a factor of 3. If one adopts these empirical uncertainties for single-eclipse measurements, then the evidence for molecular features all but disappears: blackbodies have better BIC than spectral retrieval for all planets, save HD 189733b, and the few planets poorly fit by blackbodies are also poorly fit by self-consistent radiative transfer models. This suggests that the features in extant broadband emission spectra are due to astrophysical and instrumental noise rather than molecular bands. Claims of stratospheric
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا