ﻻ يوجد ملخص باللغة العربية
Supersonic gas jets produced by converging-diverging (C-D) nozzles are commonly used as targets for laser-plasma acceleration (LPA) experiments. A major point of interest for these targets is the gas density at the region of interaction where the laser ionizes the gas plume to create a plasma, providing the acceleration structure. Tuning the density profiles at this interaction region is crucial to LPA optimization. A flat-top density profile is desired at this line of interaction to control laser propagation and high energy electron acceleration, while a short high-density profile is often preferred for acceleration of lower-energy tightly-focused laser-plasma interactions. A particular design parameter of interest is the curvature of the nozzles diverging section. We examine three nozzle designs with different curvatures: the concave bell, straight conical and convex trumpet nozzles. We demonstrate that, at mm-scale distances from the nozzle exit, the trumpet and straight nozzles, if optimized, produce flat-top density profiles whereas the bell nozzle creates focused regions of gas with higher densities. An optimization procedure for the trumpet nozzle is derived and compared to the straight nozzle optimization process. We find that the trumpet nozzle, by providing an extra parameter of control through its curvature, is more versatile for creating flat-top profiles and its optimization procedure is more refined compared to the straight nozzle and the straight nozzle optimization process. We present results for different nozzle designs from computational fluid dynamics (CFD) simulations performed with the program ANSYS Fluent and verify them experimentally using neutral density interferometry.
We propose a scheme to overcome the great challenge of polarization loss in spin-polarized ion acceleration. When a petawatt laser pulse penetrates through a compound plasma target consisting of a double layer slab and prepolarized hydrogen halide ga
Laser wakefield accelerators rely on the extremely high electric fields of nonlinear plasma waves to trap and accelerate electrons to relativistic energies over short distances. When driven strongly enough, plasma waves break, trapping a large popula
We demonstrate that laser reflection acts as a catalyst for superponderomotive electron production in the preplasma formed by relativistic multipicosecond lasers incident on solid density targets. In 1D particle-in-cell simulations, high energy elect
We explore a regime of laser-driven plasma acceleration of electrons where the radial envelope of the laser-pulse incident at the plasma entrance is strongly mismatched to the nonlinear plasma electron response excited by it. This regime has been exp
Interaction of an ultrastrong short laser pulse with non-prepolarized near-critical density plasma is investigated in an ultrarelativistic regime, with an emphasis on the radiative spin polarization of ejected electrons. Our particle-in-cell simulati