ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser reflection as a catalyst for direct laser acceleration in multipicosecond laser-plasma interaction

94   0   0.0 ( 0 )
 نشر من قبل Kathleen Weichman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that laser reflection acts as a catalyst for superponderomotive electron production in the preplasma formed by relativistic multipicosecond lasers incident on solid density targets. In 1D particle-in-cell simulations, high energy electron production proceeds via two stages of direct laser acceleration, an initial stochastic backward stage, and a final non-stochastic forward stage. The initial stochastic stage, driven by the reflected laser pulse, provides the pre-acceleration needed to enable the final stage to be non-stochastic. Energy gain in the electrostatic potential, which has been frequently considered to enhance stochastic heating, is only of secondary importance. The mechanism underlying the production of high energy electrons by laser pulses incident on solid density targets is of direct relevance to applications involving multipicosecond laser-plasma interactions.



قيم البحث

اقرأ أيضاً

Laser wakefield accelerators rely on the extremely high electric fields of nonlinear plasma waves to trap and accelerate electrons to relativistic energies over short distances. When driven strongly enough, plasma waves break, trapping a large popula tion of the background electrons that support their motion. This limits the maximum electric field. Here we introduce a novel regime of plasma wave excitation and wakefield acceleration that removes this limit, allowing for arbitrarily high electric fields. The regime, enabled by spatiotemporal shaping of laser pulses, exploits the property that nonlinear plasma waves with superluminal phase velocities cannot trap charged particles and are therefore immune to wave breaking. A laser wakefield accelerator operating in this regime provides energy tunability independent of the plasma density and can accommodate the large laser amplitudes delivered by modern and planned high-power, short pulse laser systems.
198 - S. Corde , C. Thaury , K. Ta Phuoc 2012
Betatron x-ray emission in laser-plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emi ssion can reveal crucial information about relativistic laser-plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half.
We explore a regime of laser-driven plasma acceleration of electrons where the radial envelope of the laser-pulse incident at the plasma entrance is strongly mismatched to the nonlinear plasma electron response excited by it. This regime has been exp erimentally studied with the gemini laser using f/40 focusing optics in August 2015 and f/20 in 2008. The physical mechanisms and the scaling laws of electron acceleration achievable in a laser-plasma accelerator have been studied in the radially matched laser regime and thus are not accurate in the strongly mismatched regime explored here. In this work, we show that a novel adjusted-a0 model applicable over a specific range of densities where the laser enters the state of a strong optical shock, describes the mismatched regime. Beside several novel aspects of laser-plasma interaction dynamics relating to an elongating bubble shape and the corresponding self-injection mechanism, importantly we find that in this strongly mismatched regime when the laser pulse transforms into an optical shock it is possible to achieve beam-energies that significantly exceed the incident intensity matched regime scaling laws.
We present methods and preliminary observations of two pulse Direct Laser Acceleration in a Laser-Driven Plasma Accelerator. This acceleration mechanism uses a second co-propagating laser pulse to overlap and further accelerate electrons in a wakefie ld bubble, increasing energy at the cost of emittance when compared to traditional laser wakefield acceleration (LWFA). To this end, we introduce a method of femtosecond scale control of time delay between two co-propagating pulses. We show energy enhancement when the separation between the two pulses approaches the bubble radius.
A set of ballpark parameters for laser, plasma, and accelerator technologies that define for electron energies reaching as high as TeV are identified. These ballpark parameters are carved out from the fundamental scaling laws that govern laser accele ration, theoretically suggested and experimentally explored over a wide range in the recent years. In the density regime on the order of 10^{16} cm^{-3}, the appropriate laser technology, we find, matches well with that of a highly efficient high fluence LD driven Yb ceramic laser. Further, the collective acceleration technique applies to compactify the beam stoppage stage by adopting the beam-plasma wave deceleration, which contributes to significantly enhance the stopping power and energy recovery capability of the beam. Thus we find the confluence of the needed laser acceleration parameters dictated by these scaling laws and the emerging laser technology. This may herald a new technology in the ultrahigh energy frontier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا