ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastic photon-initiated production at the LHC: the role of hadron-hadron interactions

126   0   0.0 ( 0 )
 نشر من قبل Lucian Harland-Lang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse in detail the role of additional hadron-hadron interactions in elastic photon-initiated (PI) production at the LHC, both in $pp$ and heavy ion collisions. We first demonstrate that the source of difference between our predictions and other results in the literature for PI muon pair production is dominantly due to an unphysical cut that is imposed in these latter results on the dimuon-hadron impact parameter. We in addition show that this is experimentally disfavoured by the shape of the muon kinematic distributions measured by ATLAS in ultraperipheral PbPb collisions. We then consider the theoretical uncertainty due to the survival probability for no additional hadron-hadron interactions, and in particular the role this may play in the tendency for the predicted cross sections to lie somewhat above ATLAS data on PI muon pair production, in both $pp$ and PbPb collisions. This difference is relatively mild, at the $sim 10%$ level, and hence a very good control over the theory is clearly required. We show that this uncertainty is very small, and it is only by taking very extreme and rather unphysical variations in the modelling of the survival factor that this tension can be removed. This underlines the basic, rather model independent, point that a significant fraction of elastic PI scattering occurs for hadron-hadron impact parameters that are simply outside the range of QCD interactions, and hence this sets a lower bound on the survival factor in any physically reasonable approach. Finally, other possible origins for this discrepancy are discussed.



قيم البحث

اقرأ أيضاً

In this paper we study the inelastic quarkonium photoproduction in coherent $pp/pPb/PbPb$ interactions. Considering the ultra relativistic hadrons as a source of photons, we estimate the total $ h_1 + h_2 rightarrow h otimes V + X$ ($V = J/Psi$ and $ Upsilon$) cross sections and rapidity distributions at LHC energies. Our results demonstrate that the experimental analysis of this process can be used to understand the underlying mechanism governing heavy quarkonium production.
In this paper we analyse the double vector meson production in photon -- hadron ($gamma h$) interactions at $pp/pA/AA$ collisions and present predictions for the $rhorho$, $J/Psi J/Psi$ and $rho J/Psi$ production considering the double scattering mec hanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in $gamma gamma$ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS and LHCb Collaborations. Our results demonstrate that the $rhorho$ and $J/Psi J/Psi$ production in $PbPb$ collisions is dominated by the double scattering mechanism, while the two - photon mechanism dominates in $pp$ collisions. Moreover, our results indicate that the analysis of the $rho J/Psi$ production at LHC can be useful to constrain the double scattering mechanism.
We present the results of the new SuperChic 4 Monte Carlo implementation of photon-initiated production in proton-proton collisions, considering as a first example the case of lepton pair production. This is based on the structure function calculatio n of the underlying process, and focusses on a complete account of the various contributing channels, including the case where a rapidity gap veto is imposed. We provide a careful treatment of the contributions where either (single dissociation), both (double dissociation) or neither (elastic) proton interacts inelastically and dissociates, and interface our results to Pythia for showering and hadronization. The particle decay distribution from dissociation system, as well the survival probability for no additional proton-proton interactions, are both fully accounted for; these are essential for comparing to data where a rapidity gap veto is applied. We present detailed results for the impact of the veto requirement on the differential cross section, compare to and find good agreement with ATLAS 7 TeV data on semi-exclusive production, and provide a new precise evaluation of the background from semi-exclusive lepton pair production to SUSY particle production in compressed mass scenarios, which is found to be low.
In this paper we study leading neutron production in photon - hadron interactions which take place in $pp$ and $pA$ collisions at large impact parameters. Using a model that describes the recent leading neutron data at HERA, we consider exclusive vec tor meson production in association with a leading neutron in $pp/pA$ collisions at RHIC and LHC energies. The total cross sections and rapidity distributions of $rho$, $phi$ and $J/Psi$ produced together with a leading neutron are computed. Our results indicate that the study of these processes is feasible and that it can be used to improve the understanding of leading neutron processes and of exclusive vector meson production.
In this paper we investigate the $eta_c$ production by photon - photon and photon - hadron interactions in $pp$ and $pA$ collisions at the LHC energies. The inclusive and diffractive contributions for the $eta_c$ photoproduction are estimated using t he nonrelativistic quantum chromodynamics (NRQCD) formalism. We estimate the rapidity and transverse momentum distributions for the $eta_c$ photoproduction in hadronic collisions at the LHC and present our estimate for the total cross sections at the Run 2 energies. A comparison with the predictions for the exclusive $eta_c$ photoproduction, which is a direct probe of the Odderon, also is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا