ترغب بنشر مسار تعليمي؟ اضغط هنا

A new approach to modelling elastic and inelastic photon-initiated production at the LHC: SuperChic 4

86   0   0.0 ( 0 )
 نشر من قبل Lucian Harland-Lang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the new SuperChic 4 Monte Carlo implementation of photon-initiated production in proton-proton collisions, considering as a first example the case of lepton pair production. This is based on the structure function calculation of the underlying process, and focusses on a complete account of the various contributing channels, including the case where a rapidity gap veto is imposed. We provide a careful treatment of the contributions where either (single dissociation), both (double dissociation) or neither (elastic) proton interacts inelastically and dissociates, and interface our results to Pythia for showering and hadronization. The particle decay distribution from dissociation system, as well the survival probability for no additional proton-proton interactions, are both fully accounted for; these are essential for comparing to data where a rapidity gap veto is applied. We present detailed results for the impact of the veto requirement on the differential cross section, compare to and find good agreement with ATLAS 7 TeV data on semi-exclusive production, and provide a new precise evaluation of the background from semi-exclusive lepton pair production to SUSY particle production in compressed mass scenarios, which is found to be low.

قيم البحث

اقرأ أيضاً

We analyse in detail the role of additional hadron-hadron interactions in elastic photon-initiated (PI) production at the LHC, both in $pp$ and heavy ion collisions. We first demonstrate that the source of difference between our predictions and other results in the literature for PI muon pair production is dominantly due to an unphysical cut that is imposed in these latter results on the dimuon-hadron impact parameter. We in addition show that this is experimentally disfavoured by the shape of the muon kinematic distributions measured by ATLAS in ultraperipheral PbPb collisions. We then consider the theoretical uncertainty due to the survival probability for no additional hadron-hadron interactions, and in particular the role this may play in the tendency for the predicted cross sections to lie somewhat above ATLAS data on PI muon pair production, in both $pp$ and PbPb collisions. This difference is relatively mild, at the $sim 10%$ level, and hence a very good control over the theory is clearly required. We show that this uncertainty is very small, and it is only by taking very extreme and rather unphysical variations in the modelling of the survival factor that this tension can be removed. This underlines the basic, rather model independent, point that a significant fraction of elastic PI scattering occurs for hadron-hadron impact parameters that are simply outside the range of QCD interactions, and hence this sets a lower bound on the survival factor in any physically reasonable approach. Finally, other possible origins for this discrepancy are discussed.
Next-to-leading order predictions matched to parton showers are compared with recent ATLAS data on inclusive photon production and CMS data on associated photon and jet production in pp and pPb collisions at different centre-of-mass energies of the L HC. We find good agreement and, as expected, considerably reduced scale uncertainties compared to previous theoretical calculations. Predictions are made for the ratio of inclusive photons over decay photons $R_gamma$, an important quantity to evaluate the significance of additional photon sources, e.g. thermal radiation from a Quark-Gluon-Plasma, and for distributions in the parton momentum fraction in lead ions $x_{rm Pb}^{rm obs}$, that could be determined by ALICE, ATLAS, CMS and LHCb in ongoing analyses of photon+jet production in pPb collisions at $sqrt{s_{NN}}=5.02$ TeV. These data should have an important impact on the determination of nuclear effects such as shadowing at low $x$.
We discuss how the main features of the recent LHC data on elastic scattering can be described by a QCD-inspired formalism with a dynamical infrared mass scale. For this purpose new developments on a dynamical gluon mass approach are reported, with e mphasis on a method to estimate uncertainty bounds in the predictions for the high-energy scattering observables. We investigate the effects due to the correlations among the fixed and free parameters involved and show that the band of predictions are consistent with the recent data from the TOTEM experiment, including the forward quantities and the differential cross section up to the dip position.
In this paper we investigate the $eta_c$ production by photon - photon and photon - hadron interactions in $pp$ and $pA$ collisions at the LHC energies. The inclusive and diffractive contributions for the $eta_c$ photoproduction are estimated using t he nonrelativistic quantum chromodynamics (NRQCD) formalism. We estimate the rapidity and transverse momentum distributions for the $eta_c$ photoproduction in hadronic collisions at the LHC and present our estimate for the total cross sections at the Run 2 energies. A comparison with the predictions for the exclusive $eta_c$ photoproduction, which is a direct probe of the Odderon, also is presented.
We present results of the updated SuperChic 3 Monte Carlo event generator for central exclusive production. This extends the previous treatment of proton-proton collisions to include heavy ion (pA and AA) beams, for both photon and QCD-initiated prod uction, the first time such a unified treatment of exclusive processes has been presented in a single generator. To achieve this we have developed a theory of the gap survival factor in heavy ion collisions, which allows us to derive some straightforward results about the $A$ scaling of the corresponding cross sections. We compare against the recent ATLAS and CMS measurements of light-by-light scattering at the LHC, in lead-lead collisions. We find that the background from QCD-initiated production is expected to be very small, in contrast to some earlier estimates. We also present results from new photon-initiated processes that can now be generated, namely the production of axion-like particles, monopole pairs and monopolium, top quark pair production, and the inclusion of $W$ loops in light-by-light scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا