ﻻ يوجد ملخص باللغة العربية
Mastery of order-disorder processes in highly non-equilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these processes at high spatial, chemical, and temporal resolution, particularly in extreme environments. Here we describe the percolation of disorder at the model oxide interface LaMnO$_3$ / SrTiO$_3$, which we visualize during in situ ion irradiation in the transmission electron microscope. We observe the formation of a network of disorder during the initial stages of ion irradiation and track the global progression of the system to full disorder. We couple these measurements with detailed structural and chemical probes, examining possible underlying defect mechanisms responsible for this unique percolative behavior.
Control of order-disorder phase transitions is a fundamental materials science challenge, underpinning the development of energy storage technologies such as solid oxide fuel cells and batteries, ultra-high temperature ceramics, and durable nuclear w
Order-disorder processes fundamentally determine the structure and properties of many important oxide systems for energy and computing applications. While these processes have been intensively studied in bulk materials, they are less investigated and
Here we study the electronic properties of cuprate/manganite interfaces. By means of atomic resolution electron microscopy and spectroscopy, we produce a subnanometer scale map of the transition metal oxidation state profile across the interface betw
A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic str
Magneto-ionic control of magnetic properties through ionic migration has shown promise in enabling new functionalities in energy-efficient spintronic devices. In this work, we demonstrate the effect of helium ion irradiation and oxygen implantation o