ترغب بنشر مسار تعليمي؟ اضغط هنا

Competition between covalent bonding and charge transfer at complex-oxide interfaces

218   0   0.0 ( 0 )
 نشر من قبل Julian Rincon
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we study the electronic properties of cuprate/manganite interfaces. By means of atomic resolution electron microscopy and spectroscopy, we produce a subnanometer scale map of the transition metal oxidation state profile across the interface between the high $T_c$ superconductor YBa$_2$Cu$_3$O$_{7-delta}$ and the colossal magnetoresistance compound (La,Ca)MnO$_3$. A net transfer of electrons from manganite to cuprate with a peculiar non-monotonic charge profile is observed. Model calculations rationalize the profile in terms of the competition between standard charge transfer tendencies (due to band mismatch), strong chemical bonding effects across the interface, and Cu substitution into the Mn lattice, with different characteristic length scales.



قيم البحث

اقرأ أيضاً

The issue of the net charge at insulating oxide interfaces is shortly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge a t such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarisation of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO$_3$ over SrTiO$_3$ in the absence of free carriers, for which the net charge is exactly 0.5$e$ per interface formula unit, if the polarisation response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt [Phys. Rev. B {bf 80}, 241103 (2009)] of using formal polarisation values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith [Phys. Rev. B {bf 48}, 4442 (1993)]. Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarisation quanta.
Built-in electric fields across heterojunctions between semiconducting materials underpin the functionality of modern device technologies. Heterojunctions between semiconductors and epitaxially grown crystalline oxides provide a rich setting in which built-in fields can be explored. Here, we present an electrical transport and hard X-ray photoelectron spectroscopy study of epitaxial SrNbxTi1-xO3-{delta} / Si heterojunctions. A non-monotonic anomaly in the sheet resistance is observed near room temperature, which is accompanied by a crossover in sign of the Hall resistance. The crossover is consistent with the formation of a hole gas in the Si and the presence of a built-in field. Hard X-ray photoelectron spectroscopy measurements reveal pronounced asymmetric features in both the SrNbxTi1-xO3-{delta} and Si core-level spectra that we show arise from built-in fields. The extended probe depth of hard X-ray photoelectron spectroscopy enables band bending across the SrNbxTi1-xO3-{delta} / Si heterojunction to be spatially mapped. Band alignment at the interface and surface depletion in SrNbxTi1-xO3-{delta} are implicated in the formation of the hole gas and built-in fields. Control of charge transfer and built-in electric fields across semiconductor-crystalline oxide interfaces opens a pathway to novel functional heterojunctions.
Subtle changes in chemical bonds may result in dramatic revolutions in magnetic properties in solid state materials. MnPt5P, a new derivative of the rare-earth-free ferromagnetic MnPt5As, was discovered and is presented in this work. MnPt5P was synth esized and its crystal structure and chemical composition were characterized by X-ray diffraction as well as energy-dispersive X-ray spectroscopy. Accordingly, MnPt5P crystallizes in the layered tetragonal structure with the space group P4/mmm (No. 123), in which the face-shared Mn@Pt12 polyhedral layers are separated by P layers. In contrast to the ferromagnetism observed in MnPt5As, the magnetic properties measurements on MnPt5P show antiferromagnetic ordering occurs at ~188 K with a strong magnetic anisotropy in and out of the ab-plane. Moreover, a spin-flop transition appears when a high magnetic field is applied. An A-type antiferromagnetic structure was obtained from the analysis of powder neutron diffraction (PND) patterns collected at 150 K and 9 K. Calculated electronic structures imply that hybridization of Mn-3d and Pt-5d orbitals are critical for both the structural stability and observed magnetic properties. Semi-empirical molecular orbitals calculations on both MnPt5P and MnPt5As indicate that the lack of 4p character on the P atoms at the highest occupied molecular orbital (HOMO) in MnPt5P may cause the different magnetic behavior in MnPt5P compared to MnPt5As. The discovery of MnPt5P, along with our previously reported MnPt5As, parametrizes the end points of a tunable system to study the chemical bonding which tunes the magnetic ordering from ferromagnetism to antiferromagnetism with strong spin-orbit coupling (SOC) effect.
At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence ha s led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from correlations between transition metal and oxygen ions. Strong correlations thus offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metaloxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.
Atomically flat interfaces between ternary oxides have chemically different variants, depending on the terminating lattice planes of both oxides. Electronic properties change with the interface termination which affects, for instance, charge accumula tion and magnetic interactions at the interface. Well-defined terminations have yet rarely been achieved for oxides of ABO3 type (with metals A, B). Here, we report on a strategy of thin film growth and interface characterization applied to fabricate the La0.7Sr0.3MnO3-SrRuO3 interface with controlled termination. Ultra-strong antiferromagnetic coupling between the ferromagnets occurs at the MnO2-SrO interface, but not for the other termination, in agreement with density functional calculations. X-ray magnetic circular dichroism measurements reveal coupled reversal of Mn and Ru magnetic moments at the MnO2-SrO interface. Our results demonstrate termination control of magnetic coupling across a complex oxide interface and provide a pathway for theoretical and experimental explorations of novel electronic interface states with engineered magnetic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا