ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then propose an algorithmic framework to tackle the considered class of problems and prove its convergence to points satisfying the newly introduced concept of stationarity. We further show that, by suitably choosing the neighborhood, other well-known optimality conditions from the literature can be recovered at the limit points of the sequence produced by the algorithm. Finally, we analyze the computational impact of the neighborhood size within our framework and in the comparison with some state-of-the-art algorithms, namely, the Penalty Decomposition method and the Greedy Sparse-Simplex method. The algorithms have been tested using a benchmark related to sparse logistic regression problems.
Nonsmooth sparsity constrained optimization captures a broad spectrum of applications in machine learning and computer vision. However, this problem is NP-hard in general. Existing solutions to this problem suffer from one or more of the following li
We expand the scope of the alternating direction method of multipliers (ADMM). Specifically, we show that ADMM, when employed to solve problems with multiaffine constraints that satisfy certain verifiable assumptions, converges to the set of constrai
We provide several algorithms for constrained optimization of a large class of convex problems, including softmax, $ell_p$ regression, and logistic regression. Central to our approach is the notion of width reduction, a technique which has proven imm
Minimax optimization problems arises from both modern machine learning including generative adversarial networks, adversarial training and multi-agent reinforcement learning, as well as from tradition research areas such as saddle point problems, num
We introduce a novel primal-dual flow for affine constrained convex optimization problem. As a modification of the standard saddle-point system, our primal-dual flow is proved to possesses the exponential decay property, in terms of a tailored Lyapun