ترغب بنشر مسار تعليمي؟ اضغط هنا

Accuracy of the typicality approach using Chebyshev polynomials

131   0   0.0 ( 0 )
 نشر من قبل J. Schnack
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Trace estimators allow to approximate thermodynamic equilibrium observables with astonishing accuracy. A prominent representative is the finite-temperature Lanczos method (FTLM) which relies on a Krylov space expansion of the exponential describing the Boltzmann weights. Here we report investigations of an alternative approach which employs Chebyshev polynomials. This method turns out to be also very accurate in general, but shows systematic inaccuracies at low temperatures that can be traced back to an improper behavior of the approximated density of states with and without smoothing kernel. Applications to archetypical quantum spin systems are discussed as examples.

قيم البحث

اقرأ أيضاً

116 - J. Schnack 2019
We study trace estimators for equilibrium thermodynamic observables that rely on the idea of typicality and derivatives thereof such as the finite-temperature Lanczos method (FTLM). As numerical examples quantum spin systems are studied. Our initial aim was to identify pathological examples or circumstances, such as strong frustration or unusual densities of states, where these methods could fail. Instead we failed with the attempt. All investigated systems allow such approximations, only at temperatures of the order of the lowest energy gap the convergence is somewhat slower in the number of random vectors over which observables are averaged.
We propose a new concept for the dynamics of a quantum bath, the Chebyshev space, and a new method based on this concept, the Chebyshev space method. The Chebyshev space is an abstract vector space that exactly represents the fermionic or bosonic bat h degrees of freedom, without a discretization of the bath density of states. Relying on Chebyshev expansions the Chebyshev space representation of a bath has very favorable properties with respect to extremely precise and efficient calculations of groundstate properties, static and dynamical correlations, and time-evolution for a great variety of quantum systems. The aim of the present work is to introduce the Chebyshev space in detail and to demonstrate the capabilities of the Chebyshev space method. Although the central idea is derived in full generality the focus is on model systems coupled to fermionic baths. In particular we address quantum impurity problems, such as an impurity in a host or a bosonic impurity with a static barrier, and the motion of a wave packet on a chain coupled to leads. For the bosonic impurity, the phase transition from a delocalized electron to a localized polaron in arbitrary dimension is detected. For the wave packet on a chain, we show how the Chebyshev space method implements different boundary conditions, including transparent boundary conditions replacing infinite leads. Furthermore the self-consistent solution of the Holstein model in infinite dimension is calculated. With the examples we demonstrate how highly accurate results for system energies, correlation and spectral functions, and time-dependence of observables are obtained with modest computational effort.
Calculating the spectral function of two dimensional systems is arguably one of the most pressing challenges in modern computational condensed matter physics. While efficient techniques are available in lower dimensions, two dimensional systems prese nt insurmountable hurdles, ranging from the sign problem in quantum Monte Carlo (MC), to the entanglement area law in tensor network based methods. We hereby present a variational approach based on a Chebyshev expansion of the spectral function and a neural network representation for the wave functions. The Chebyshev moments are obtained by recursively applying the Hamiltonian and projecting on the space of variational states using a modified natural gradient descent method. We compare this approach with a modified approximation of the spectral function which uses a Krylov subspace constructed from the Chebyshev wave-functions. We present results for the one-dimensional and two-dimensional Heisenberg model on the square lattice, and compare to those obtained by other methods in the literature.
We study the frequency dependence of the optical conductivity $text{Re} , sigma(omega)$ of the Heisenberg spin-$1/2$ chain in the thermal and near the transition to the many-body localized phase induced by the strength of a random $z$-directed magnet ic field. Using the method of dynamical quantum typicality, we calculate the real-time dynamics of the spin-current autocorrelation function and obtain the Fourier transform $text{Re} , sigma(omega)$ for system sizes much larger than accessible to standard exact-diagonalization approaches. We find that the low-frequency behavior of $text{Re} , sigma(omega)$ is well described by $text{Re} , sigma(omega) approx sigma_text{dc} + a , |omega|^alpha$, with $alpha approx 1$ in a wide range within the thermal phase and close to the transition. We particularly detail the decrease of $sigma_text{dc}$ in the thermal phase as a function of increasing disorder for strong exchange anisotropies. We further find that the temperature dependence of $sigma_text{dc}$ is consistent with the existence of a mobility edge.
181 - Victor Reis 2020
Given $n$ polynomials $p_1, dots, p_n$ of degree at most $n$ with $|p_i|_infty le 1$ for $i in [n]$, we show there exist signs $x_1, dots, x_n in {-1,1}$ so that [Big|sum_{i=1}^n x_i p_iBig|_infty < 30sqrt{n}, ] where $|p|_infty := sup_{|x| le 1} |p( x)|$. This result extends the Rudin-Shapiro sequence, which gives an upper bound of $O(sqrt{n})$ for the Chebyshev polynomials $T_1, dots, T_n$, and can be seen as a polynomial analogue of Spencers six standard deviations theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا