ﻻ يوجد ملخص باللغة العربية
We study trace estimators for equilibrium thermodynamic observables that rely on the idea of typicality and derivatives thereof such as the finite-temperature Lanczos method (FTLM). As numerical examples quantum spin systems are studied. Our initial aim was to identify pathological examples or circumstances, such as strong frustration or unusual densities of states, where these methods could fail. Instead we failed with the attempt. All investigated systems allow such approximations, only at temperatures of the order of the lowest energy gap the convergence is somewhat slower in the number of random vectors over which observables are averaged.
It is virtually impossible to evaluate the magnetic properties of large anisotropic magnetic molecules numerically exactly due to the huge Hilbert space dimensions as well as due to the absence of symmetries. Here we propose to advance the Finite-Tem
The very interesting magnetic properties of frustrated magnetic molecules are often hardly accessible due to the prohibitive size of the related Hilbert spaces. The finite-temperature Lanczos method is able to treat spin systems for Hilbert space siz
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long, {it et al.} [Phys. Rev. B {bf 68}, 235106 (2003)] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based o
We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic proce
Trace estimators allow to approximate thermodynamic equilibrium observables with astonishing accuracy. A prominent representative is the finite-temperature Lanczos method (FTLM) which relies on a Krylov space expansion of the exponential describing t