ترغب بنشر مسار تعليمي؟ اضغط هنا

Smoothing fast iterative hard thresholding algorithm for $ell_0$ regularized nonsmooth convex regression problem

87   0   0.0 ( 0 )
 نشر من قبل Fan Wu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a class of constrained sparse regression problem with cardinality penalty, where the feasible set is defined by box constraint, and the loss function is convex, but not necessarily smooth. First, we put forward a smoothing fast iterative hard thresholding (SFIHT) algorithm for solving such optimization problems, which combines smoothing approximations, extrapolation techniques and iterative hard thresholding methods. The extrapolation coefficients can be chosen to satisfy $sup_k beta_k=1$ in the proposed algorithm. We discuss the convergence behavior of the algorithm with different extrapolation coefficients, and give sufficient conditions to ensure that any accumulation point of the iterates is a local minimizer of the original cardinality penalized problem. In particular, for a class of fixed extrapolation coefficients, we discuss several different update rules of the smoothing parameter and obtain the convergence rate of $O(ln k/k)$ on the loss and objective function values. Second, we consider the case in which the loss function is Lipschitz continuously differentiable, and develop a fast iterative hard thresholding (FIHT) algorithm to solve it. We prove that the iterates of FIHT converge to a local minimizer of the problem that satisfies a desirable lower bound property. Moreover, we show that the convergence rate of loss and objective function values are $o(k^{-2})$. Finally, some numerical examples are presented to illustrate the theoretical results.

قيم البحث

اقرأ أيضاً

In recent studies on sparse modeling, $l_q$ ($0<q<1$) regularized least squares regression ($l_q$LS) has received considerable attention due to its superiorities on sparsity-inducing and bias-reduction over the convex counterparts. In this paper, we propose a Gauss-Seidel iterative thresholding algorithm (called GAITA) for solution to this problem. Different from the classical iterative thresholding algorithms using the Jacobi updating rule, GAITA takes advantage of the Gauss-Seidel rule to update the coordinate coefficients. Under a mild condition, we can justify that the support set and sign of an arbitrary sequence generated by GAITA will converge within finite iterations. This convergence property together with the Kurdyka-{L}ojasiewicz property of ($l_q$LS) naturally yields the strong convergence of GAITA under the same condition as above, which is generally weaker than the condition for the convergence of the classical iterative thresholding algorithms. Furthermore, we demonstrate that GAITA converges to a local minimizer under certain additional conditions. A set of numerical experiments are provided to show the effectiveness, particularly, much faster convergence of GAITA as compared with the classical iterative thresholding algorithms.
We study --both in theory and practice-- the use of momentum motions in classic iterative hard thresholding (IHT) methods. By simply modifying plain IHT, we investigate its convergence behavior on convex optimization criteria with non-convex constrai nts, under standard assumptions. In diverse scenaria, we observe that acceleration in IHT leads to significant improvements, compared to state of the art projected gradient descent and Frank-Wolfe variants. As a byproduct of our inspection, we study the impact of selecting the momentum parameter: similar to convex settings, two modes of behavior are observed --rippling and linear-- depending on the level of momentum.
The total least squares problem with the general Tikhonov regularization can be reformulated as a one-dimensional parametric minimization problem (PM), where each parameterized function evaluation corresponds to solving an n-dimensional trust region subproblem. Under a mild assumption, the parametric function is differentiable and then an efficient bisection method has been proposed for solving (PM) in literature. In the first part of this paper, we show that the bisection algorithm can be greatly improved by reducing the initially estimated interval covering the optimal parameter. It is observed that the bisection method cannot guarantee to find the globally optimal solution since the nonconvex (PM) could have a local non-global minimizer. The main contribution of this paper is to propose an efficient branch-and-bound algorithm for globally solving (PM), based on a novel underestimation of the parametric function over any given interval using only the information of the parametric function evaluations at the two endpoints. We can show that the new algorithm(BTD Algorithm) returns a global epsilon-approximation solution in a computational effort of at most O(n^3/epsilon) under the same assumption as in the bisection method. The numerical results demonstrate that our new global optimization algorithm performs even much faster than the improved version of the bisection heuristic algorithm.
The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values are derived, including a $Oleft(1/k^{2}right)$ non-asymptotic bound. The presented theory broadens current knowledge and explains the convergence behavior of certain methods that are known to present good practical performance. Numerical experimentation involving computerized tomography image reconstruction shows the methods to be competitive in practical scenarios. Experimental comparison with Algebraic Reconstruction Techniques are performed uncovering certain behaviors of accelerated Proximal Gradient algorithms that apparently have not yet been noticed when these are applied to tomographic image reconstruction.
The problem of recovering a low-rank matrix from the linear constraints, known as affine matrix rank minimization problem, has been attracting extensive attention in recent years. In general, affine matrix rank minimization problem is a NP-hard. In o ur latest work, a non-convex fraction function is studied to approximate the rank function in affine matrix rank minimization problem and translate the NP-hard affine matrix rank minimization problem into a transformed affine matrix rank minimization problem. A scheme of iterative singular value thresholding algorithm is generated to solve the regularized transformed affine matrix rank minimization problem. However, one of the drawbacks for our iterative singular value thresholding algorithm is that the parameter $a$, which influences the behaviour of non-convex fraction function in the regularized transformed affine matrix rank minimization problem, needs to be determined manually in every simulation. In fact, how to determine the optimal parameter $a$ is not an easy problem. Here instead, in this paper, we will generate an adaptive iterative singular value thresholding algorithm to solve the regularized transformed affine matrix rank minimization problem. When doing so, our new algorithm will be intelligent both for the choice of the regularized parameter $lambda$ and the parameter $a$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا