ﻻ يوجد ملخص باللغة العربية
Due to the distributed characteristics of Federated Learning (FL), the vulnerability of global model and coordination of devices are the main obstacle. As a promising solution of decentralization, scalability and security, leveraging blockchain in FL has attracted much attention in recent years. However, the traditional consensus mechanisms designed for blockchain like Proof of Work (PoW) would cause extreme resource consumption, which reduces the efficiency of FL greatly, especially when the participating devices are wireless and resource-limited. In order to address device asynchrony and anomaly detection in FL while avoiding the extra resource consumption caused by blockchain, this paper introduces a framework for empowering FL using Direct Acyclic Graph (DAG)-based blockchain systematically (DAG-FL). Accordingly, DAG-FL is first introduced from a three-layer architecture in details, and then two algorithms DAG-FL Controlling and DAG-FL Updating are designed running on different nodes to elaborate the operation of DAG-FL consensus mechanism. After that, a Poisson process model is formulated to discuss that how to set deployment parameters to maintain DAG-FL stably in different federated learning tasks. The extensive simulations and experiments show that DAG-FL can achieve better performance in terms of training efficiency and model accuracy compared with the typical existing on-device federated learning systems as the benchmarks.
Device failure detection is one of most essential problems in industrial internet of things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might l
Federated learning is an emerging privacy-preserving AI technique where clients (i.e., organisations or devices) train models locally and formulate a global model based on the local model updates without transferring local data externally. However, f
Federated Learning (FL) allows edge devices to collaboratively learn a shared prediction model while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store data in the cloud. Despite th
Blockchain assisted federated learning (BFL) has been intensively studied as a promising technology to process data at the network edge in a distributed manner. In this paper, we focus on BFL over wireless environments with varying channels and energ
We propose a federated learning framework to handle heterogeneous client devices which do not conform to the population data distribution. The approach hinges upon a parameterized superquantile-based objective, where the parameter ranges over levels