ﻻ يوجد ملخص باللغة العربية
Mobile apps are increasingly relying on high-throughput and low-latency content delivery, while the available bandwidth on wireless access links is inherently time-varying. The handoffs between base stations and access modes due to user mobility present additional challenges to deliver a high level of user Quality-of-Experience (QoE). The ability to predict the available bandwidth and the upcoming handoffs will give applications valuable leeway to make proactive adjustments to avoid significant QoE degradation. In this paper, we explore the possibility and accuracy of realtime mobile bandwidth and handoff predictions in 4G/LTE and 5G networks. Towards this goal, we collect long consecutive traces with rich bandwidth, channel, and context information from public transportation systems. We develop Recurrent Neural Network models to mine the temporal patterns of bandwidth evolution in fixed-route mobility scenarios. Our models consistently outperform the conventional univariate and multivariate bandwidth prediction models. For 4G & 5G co-existing networks, we propose a new problem of handoff prediction between 4G and 5G, which is important for low-latency applications like self-driving strategy in realistic 5G scenarios. We develop classification and regression based prediction models, which achieve more than 80% accuracy in predicting 4G and 5G handoffs in a recent 5G dataset.
The combination of 5G and Multi-access Edge Computing (MEC) can significantly reduce application delay by lowering transmission delay and bringing computational capabilities closer to the end user. Therefore, 5G MEC could enable excellent user experi
The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-
Due to its high mobility and flexible deployment, unmanned aerial vehicle (UAV) is drawing unprecedented interest in both military and civil applications to enable agile wireless communications and provide ubiquitous connectivity. Mainly operating in
The rapid involution of the mobile generation with incipient data networking capabilities and utilization has exponentially increased the data traffic volumes. Such traffic drains various key issues in 5G mobile backhaul networks. Security of mobile
Mobile Edge Computing (MEC) is an emerging paradigm that provides computing, storage, and networking resources within the edge of the mobile Radio Access Network (RAN). MEC servers are deployed on generic computing platform within the RAN and allow f