ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Task Learning for End-to-End ASR Word and Utterance Confidence with Deletion Prediction

99   0   0.0 ( 0 )
 نشر من قبل David Qiu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Confidence scores are very useful for downstream applications of automatic speech recognition (ASR) systems. Recent works have proposed using neural networks to learn word or utterance confidence scores for end-to-end ASR. In those studies, word confidence by itself does not model deletions, and utterance confidence does not take advantage of word-level training signals. This paper proposes to jointly learn word confidence, word deletion, and utterance confidence. Empirical results show that multi-task learning with all three objectives improves confidence metrics (NCE, AUC, RMSE) without the need for increasing the model size of the confidence estimation module. Using the utterance-level confidence for rescoring also decreases the word error rates on Googles Voice Search and Long-tail Maps datasets by 3-5% relative, without needing a dedicated neural rescorer.



قيم البحث

اقرأ أيضاً

We study the problem of word-level confidence estimation in subword-based end-to-end (E2E) models for automatic speech recognition (ASR). Although prior works have proposed training auxiliary confidence models for ASR systems, they do not extend natu rally to systems that operate on word-pieces (WP) as their vocabulary. In particular, ground truth WP correctness labels are needed for training confidence models, but the non-unique tokenization from word to WP causes inaccurate labels to be generated. This paper proposes and studies two confidence models of increasing complexity to solve this problem. The final model uses self-attention to directly learn word-level confidence without needing subword tokenization, and exploits full context features from multiple hypotheses to improve confidence accuracy. Experiments on Voice Search and long-tail test sets show standard metrics (e.g., NCE, AUC, RMSE) improving substantially. The proposed confidence module also enables a model selection approach to combine an on-device E2E model with a hybrid model on the server to address the rare word recognition problem for the E2E model.
We present an end-to-end speech recognition model that learns interaction between two speakers based on the turn-changing information. Unlike conventional speech recognition models, our model exploits two speakers history of conversational-context in formation that spans across multiple turns within an end-to-end framework. Specifically, we propose a speaker-specific cross-attention mechanism that can look at the output of the other speaker side as well as the one of the current speaker for better at recognizing long conversations. We evaluated the models on the Switchboard conversational speech corpus and show that our model outperforms standard end-to-end speech recognition models.
This paper presents our recent effort on end-to-end speaker-attributed automatic speech recognition, which jointly performs speaker counting, speech recognition and speaker identification for monaural multi-talker audio. Firstly, we thoroughly update the model architecture that was previously designed based on a long short-term memory (LSTM)-based attention encoder decoder by applying transformer architectures. Secondly, we propose a speaker deduplication mechanism to reduce speaker identification errors in highly overlapped regions. Experimental results on the LibriSpeechMix dataset shows that the transformer-based architecture is especially good at counting the speakers and that the proposed model reduces the speaker-attributed word error rate by 47% over the LSTM-based baseline. Furthermore, for the LibriCSS dataset, which consists of real recordings of overlapped speech, the proposed model achieves concatenated minimum-permutation word error rates of 11.9% and 16.3% with and without target speaker profiles, respectively, both of which are the state-of-the-art results for LibriCSS with the monaural setting.
While deep learning based end-to-end automatic speech recognition (ASR) systems have greatly simplified modeling pipelines, they suffer from the data sparsity issue. In this work, we propose a self-training method with an end-to-end system for semi-s upervised ASR. Starting from a Connectionist Temporal Classification (CTC) system trained on the supervised data, we iteratively generate pseudo-labels on a mini-batch of unsupervised utterances with the current model, and use the pseudo-labels to augment the supervised data for immediate model update. Our method retains the simplicity of end-to-end ASR systems, and can be seen as performing alternating optimization over a well-defined learning objective. We also perform empirical investigations of our method, regarding the effect of data augmentation, decoding beamsize for pseudo-label generation, and freshness of pseudo-labels. On a commonly used semi-supervised ASR setting with the WSJ corpus, our method gives 14.4% relative WER improvement over a carefully-trained base system with data augmentation, reducing the performance gap between the base system and the oracle system by 50%.
Recently, an end-to-end (E2E) speaker-attributed automatic speech recognition (SA-ASR) model was proposed as a joint model of speaker counting, speech recognition and speaker identification for monaural overlapped speech. It showed promising results for simulated speech mixtures consisting of various numbers of speakers. However, the model required prior knowledge of speaker profiles to perform speaker identification, which significantly limited the application of the model. In this paper, we extend the prior work by addressing the case where no speaker profile is available. Specifically, we perform speaker counting and clustering by using the internal speaker representations of the E2E SA-ASR model to diarize the utterances of the speakers whose profiles are missing from the speaker inventory. We also propose a simple modification to the reference labels of the E2E SA-ASR training which helps handle continuous multi-talker recordings well. We conduct a comprehensive investigation of the original E2E SA-ASR and the proposed method on the monaural LibriCSS dataset. Compared to the original E2E SA-ASR with relevant speaker profiles, the proposed method achieves a close performance without any prior speaker knowledge. We also show that the source-target attention in the E2E SA-ASR model provides information about the start and end times of the hypotheses.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا