ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme adaptive optics astrometry of R136. Searching for high proper motion stars

106   0   0.0 ( 0 )
 نشر من قبل Zeinab Khorrami Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compared high-contrast near-infrared images of the core of R136 taken by VLT/SPHERE, in two epochs separated by 3.06 years. For the first time we monitored the dynamics of the detected sources in the core of R136 from a ground-based telescope with adaptive optics. The aim of these observations was to search for High prOper Motion cAndidates (HOMAs) in the central region of R136 (r<6) where it has been challenging for other instruments. Two bright sources (K<15mag and V<16mag) are located near R136a1 and R136c (massive WR stars) and have been identified as potential HOMAs. These sources have significantly shifted in the images with respect to the mean shift of all reliable detected sources and their neighbours, and six times their own astrometric errors. We calculate their proper motions to be 1.36pm0.22 mas/yr (321pm52 km/s) and 1.15pm0.11 mas/yr (273pm26 km/s). We discuss different possible scenarios to explain the magnitude of such extreme proper motions, and argue for the necessity to conduct future observations to conclude on the nature of HOMAs in the core of R136.

قيم البحث

اقرأ أيضاً

We present a Bayesian method to cross-match 5,827,988 high proper motion Gaia sources ($mu>40 mas yr^{-1}$) to various photometric surveys: 2MASS, AllWISE, GALEX, RAVE, SDSS and Pan-STARRS. To efficiently associate these objects across catalogs, we develop a technique that compares the multidimensional distribution of all sources in the vicinity of each Gaia star to a reference distribution of random field stars obtained by extracting all sources in a region on the sky displaced 2$^prime$. This offset preserves the local field stellar density and magnitude distribution allowing us to characterize the frequency of chance alignments. The resulting catalog with Bayesian probabilities $>$95% has a marginally higher match rate than current internal Gaia DR2 matches for most catalogs. However, a significant improvement is found with Pan-STARRS, where $sim$99.8% of the sample within the Pan-STARRS footprint is recovered, as compared to a low $sim$20.8% in Gaia DR2. Using these results, we train a Gaussian Process Regressor to calibrate two photometric metallicity relationships. For dwarfs of $3500<T_{eff}<5280$ K, we use metallicity values of 4,378 stars from APOGEE and Hejazi et al. (2020) to calibrate the relationship, producing results with a $1sigma$ precision of 0.12 dex and few systematic errors. We then indirectly infer the metallicity of 4,018 stars with $2850<T_{eff}<3500$ K, that are wide companions of primaries whose metallicities are estimated with our first regressor, to produce a relationship with a $1sigma$ precision of 0.21 dex and significant systematic errors. Additional work is needed to better remove unresolved binaries from this sample to reduce these systematic errors.
We present measurements of positions and relative proper motions in the 30 Doradus region of the Large Magellanic Cloud (LMC). We detail the construction of a single-epoch astrometric reference frame, based on specially-designed observations obtained with the two main imaging instruments ACS/WFC and WFC3/UVIS onboard the Hubble Space Telescope (HST). Internal comparisons indicate a sub milli-arc-second (mas) precision in the positions and the presence of semi-periodic systematics with a mean amplitude of ~0.8 mas. We combined these observations with numerous archival images taken with WFPC2 and spanning 17 years. The precision of the resulting proper motions for well-measured stars around the massive cluster R 136 can be as good as ~20 microarcsec/yr, although the true accuracy of proper motions is generally lower due to the residual systematic errors. The observed proper-motion dispersion for our highest-quality measurements is ~0.1 mas/yr. Our catalog of positions and proper motions contains 86,590 stars down to V~25 and over a total area of ~70 square arcmin. We examined the proper motions of 105 relatively bright stars and identified a total of 6 candidate runaway stars. We are able to tentatively confirm the runaway status of star VFTS 285, consistent with the findings from line-of-sight velocities, and to show that this star has likely been ejected from R 136. This study demonstrates that with HST it is now possible to reliably measure proper motions of individual stars in the nearest dwarf galaxies such as the LMC.
(abridged) The Hundred-Thousand-Proper-Motion (HTPM) project will determine the proper motions of ~113500 stars using a 23-year baseline. The proper motions will use the Hipparcos data, with epoch 1991.25, as first epoch and the first intermediate-re lease Gaia astrometry, with epoch ~2014.5, as second epoch. The expected HTPM proper-motion standard errors are 30-190 muas/yr, depending on stellar magnitude. Depending on the characteristics of an object, in particular its distance and velocity, its radial velocity can have a significant impact on the determination of its proper motion. The impact of this perspective acceleration is largest for fast-moving, nearby stars. Our goal is to determine, for each star in the Hipparcos catalogue, the radial-velocity standard error that is required to guarantee a negligible contribution of perspective acceleration to the HTPM proper-motion precision. We employ two evaluation criteria, both based on Monte-Carlo simulations, with which we determine which stars need to be spectroscopically (re-)measured. Both criteria take the Hipparcos measurement errors into account. For each star in the Hipparcos catalogue, we determine the confidence level with which the available radial velocity and its standard error, taken from the XHIP compilation catalogue, are acceptable. We find that for 97 stars, the radial velocities available in the literature are insufficiently precise for a 68.27% confidence level. We also identify 109 stars for which radial velocities are currently unknown yet need to be acquired to meet the 68.27% confidence level. To satisfy the radial-velocity requirements coming from our study will be a daunting task consuming a significant amount of spectroscopic telescope time. Fortunately, the follow-up spectroscopy is not time-critical since the HTPM proper motions can be corrected a posteriori once (improved) radial velocities become available.
100 - Z. Khorrami , F. Vakili , T. Lanz 2017
This paper presents the sharpest near-IR images of the massive cluster R136 to date, based on the extreme adaptive optics of the SPHERE focal instrument implemented on the ESO/VLT and operated in its IRDIS imaging mode. Stacking-up a few hundreds of short exposures in J and Ks spectral bands over a FoV of 10.9x12.3 centered on the R136a1 stellar component, enabled us to carry a refined photometric analysis of the core of R136. We detected 1110 and 1059 sources in J and Ks images respectively with 818 common sources. Thanks to better angular resolution and dynamic range, we found that more than 62.6% (16.5%) of the stars, detected both in J and Ks data, have neighbours closer than 0.2 (0.1). Among resolved and detected sources R136a1 and R136c have visual companions and R136a3 is resolved as two stars separated by 59mas. The new set of detected sources were used to re-assess the age and extinction of R136 based on 54 spectroscopically stars that have been recently studied with HST slit-spectroscopy. Over 90% of these 54 sources identified visual companions (closer than 0.2). We found the most probable age and extinction for these sources within the photometric and spectroscopic error-bars. Additionally, using PARSEC evolutionary isochrones and tracks, we estimated the stellar mass range for each detected source (common in J and K data) and plotted the generalized histogram of mass (MF with error-bars). Using SPHERE data, we have gone one step further and partially resolved and studied the IMF covering mass range of (3-300) Msun at the age of 1 and 1.5 Myr. The density in the core of R136 is estimated and extrapolated in 3D and larger radii (up to 6pc). We show that the stars in the core are still unresolved due to crowding, and the results we obtained are upper limits. Higher angular resolution is mandatory to overcome these difficulties.
203 - G. Orosz , H. Imai , R. Dodson 2017
We report on the measurement of the trigonometric parallaxes of 1612 MHz hydroxyl masers around two asymptotic giant branch stars, WX Psc and OH138.0+7.2, using the NRAO Very Long Baseline Array with in-beam phase referencing calibration. We obtained a 3-sigma upper limit of <=5.3 mas on the parallax of WX Psc, corresponding to a lower limit distance estimate of >~190 pc. The obtained parallax of OH138.0+7.2 is 0.52+/-0.09 mas (+/-18%), corresponding to a distance of 1.9(+0.4,-0.3) kpc, making this the first hydroxyl maser parallax below one milliarcsecond. We also introduce a new method of error analysis for detecting systematic errors in the astrometry. Finally, we compare our trigonometric distances to published phase-lag distances toward these stars and find a good agreement between the two methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا