ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrometry of OH/IR stars using 1612 MHz hydroxyl masers. I. Annual parallaxes of WX Psc and OH138.0+7.2

204   0   0.0 ( 0 )
 نشر من قبل Gabor Orosz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the measurement of the trigonometric parallaxes of 1612 MHz hydroxyl masers around two asymptotic giant branch stars, WX Psc and OH138.0+7.2, using the NRAO Very Long Baseline Array with in-beam phase referencing calibration. We obtained a 3-sigma upper limit of <=5.3 mas on the parallax of WX Psc, corresponding to a lower limit distance estimate of >~190 pc. The obtained parallax of OH138.0+7.2 is 0.52+/-0.09 mas (+/-18%), corresponding to a distance of 1.9(+0.4,-0.3) kpc, making this the first hydroxyl maser parallax below one milliarcsecond. We also introduce a new method of error analysis for detecting systematic errors in the astrometry. Finally, we compare our trigonometric distances to published phase-lag distances toward these stars and find a good agreement between the two methods.

قيم البحث

اقرأ أيضاً

182 - J.H. He 2005
(Pseudo) radiative pumprate of OH 1612 MHz masers is defined for a sample of 44 OH/IR sources (infrared sources with OH 1612 MHz maser), irrespective of the real maser pumping mechanisms. The correlation between the (pseudo) maser pumprates and the e volutionary status of the maser sources reveals that the radiative pumprates of stellar OH masers are nearly fixed, which agrees with the theoretical prediction for radiatively pumped OH maser. The (pseudo) radiative pumprates of interstellar OH masers are not only very small but also varying broadly over two orders of magnitude, which is argued to be the manifestation of varying number of quiet absorbing OH cloudlets and/or various OH maser pumping mechanisms and/or competitive gain between mainline and 1612 MHz OH masers and/or anisotropy of the maser emission. The radiative pumprates of post-AGB OH masers very possibly decrease with increasing IRAS C32 color indices and distribute in an interim region between the stellar and interstellar OH masers in the pumprate-color diagram.
75 - J.H. He , R. Szczerba , P.S. Chen 2004
The 1612 MHz hydroxyl maser in circumstellar envelopes has long been thought to be pumped by 34.6um photons. Only recently, the Infrared Space Observatory has made possible spectroscopic observations which enable the direct confirmation of this pumpi ng mechanism in a few cases. To look for the presence of this pumping line, we have searched the Infrared Space Observatory Data Archive and found 178 spectra with data around 34.6um for 87 galactic 1612MHz masers. The analysis performed showed that the noise level and the spectral resolution of the spectra are the most important factors affecting the detection of the 34.6um absorption line. Only 5 objects from the sample (3 red supergiants and 2 galactic center sources) are found to show clear 34.6um absorption (all of them already known) while two additional objects only tentatively show this line. The 3 supergiants show similar pump rates and their masers might be purely radiatively pumped. The pump rates of OH masers in late type stars are found to be about 0.05, only 1/5 of the theoretical value of 0.25 derived by Elitzur (1992). We have also found 16 maser sources which, according to the analysis assuming Elitzurs pump rate, should show the 34.6 $mu$m absorption line but do not. These non-detections can be tentatively explained by far-infrared photon pumping, clumpy nature of the OH masing region or a limb-filling emission effect in the OH shell.
95 - D. Engels , F. Bunzel 2015
We present a new database of circumstellar OH masers at 1612, 1665, and 1667 MHz in the Milky Way galaxy. The database (version 2.4) contains 13655 observations and 2341 different stars detected in at least one transition. Detections at 1612,MHz are considered to be complete until the end of 2014 as long as they were published in refereed papers. Detections of the main lines (1665 and 1667 MHz) and non-detections in all transitions are included only if published after 1983. The database contains flux densities and velocities of the two strongest maser peaks, the expansion velocity of the shell, and the radial velocity of the star. Links are provided for about 100 stars ($<$5% of all stars with OH masers) to interferometric observations and monitoring programs of the maser emission published since their beginnings in the 1970s. Access to the database is possible over the Web (www.hs.uni-hamburg.de/maserdb), allowing cone searches for individual sources and lists of sources. A general search is possible in selected regions of the sky and by defining ranges of flux densities and/or velocities. Alternative ways to access the data are via the German Virtual Observatory and the VizieR library of astronomical catalogs.
We present results on a search for 86.243 GHz SiO (J = 2 -- 1, v = 1) maser emission toward 67 OH/IR stars located near the Galactic Centre. We detected 32 spectral peaks, of which 28 correspond to SiO maser lines arising from the envelopes of these OH/IR stars. In OH/IR stars, we obtained an SiO maser detection rate of about 40%. We serendipitously detected two other lines from OH/IR stars at 86.18 GHz, which could be due to a CCS-molecule transition at 86.181 GHz or probably to an highly excited OH molecular transition at 86.178 GHz. The detection rate of 86 GHz maser emission is found to be about 60% for sources with The Midcourse Space Experiment (MSX) A - E < 2.5 mag; but it drops to 25% for the reddest OH/IR stars with MSX A - E > 2.5 mag. This supports the hypothesis by Messineo et al. (2002) that the SiO masers are primarily found in relatively thinner circumstellar material.
We report on the succesful search for CO (2-1) and (3-2) emission associated with OH/IR stars in the Galactic Bulge. We observed a sample of eight extremely red AGB stars with the APEX telescope and detected seven. The sources were selected at suffic ient high galactic latitude to avoid interference by interstellar CO, which hampered previous studies of inner galaxy stars. To study the nature of our sample and the mass loss we constructed the SEDs from photometric data and Spitzer IRS spectroscopy. In a first step we apply radiative transfer modelling to fit the SEDs and obtain luminosities and dust mass loss rates (MLR). Through dynamical modelling we then retrieve the total MLR and the gas-to-dust ratios. We derived variability periods of our stars. The luminosities range between approximately 4000 and 5500 Lsun and periods are below 700 days. The total MLR ranges between 1E-5 and 1E-4 Msun/yr. Comparison with evolutionary models shows that the progenitor mass is approximately 1.5 Msun, similar to the Bulge Miras and are of intermediate age (3 Gyr). The gas-to-dust ratios are between 100 and 400 and are similar to what is found for OH/IR stars in the galactic Disk. One star, IRAS 17347-2319, has a very short period of approximately 300 days which may be decreasing further. It may belong to a class of Mira variables with a sudden change in period as observed in some Galactic objects. It would be the first example of an OH/IR star in this class and deserves further follow-up observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا