ترغب بنشر مسار تعليمي؟ اضغط هنا

Vision Transformers with Patch Diversification

102   0   0.0 ( 0 )
 نشر من قبل Chengyue Gong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vision transformer has demonstrated promising performance on challenging computer vision tasks. However, directly training the vision transformers may yield unstable and sub-optimal results. Recent works propose to improve the performance of the vision transformers by modifying the transformer structures, e.g., incorporating convolution layers. In contrast, we investigate an orthogonal approach to stabilize the vision transformer training without modifying the networks. We observe the instability of the training can be attributed to the significant similarity across the extracted patch representations. More specifically, for deep vision transformers, the self-attention blocks tend to map different patches into similar latent representations, yielding information loss and performance degradation. To alleviate this problem, in this work, we introduce novel loss functions in vision transformer training to explicitly encourage diversity across patch representations for more discriminative feature extraction. We empirically show that our proposed techniques stabilize the training and allow us to train wider and deeper vision transformers. We further show the diversified features significantly benefit the downstream tasks in transfer learning. For semantic segmentation, we enhance the state-of-the-art (SOTA) results on Cityscapes and ADE20k. Our code is available at https://github.com/ChengyueGongR/PatchVisionTransformer.



قيم البحث

اقرأ أيضاً

108 - Yehui Tang , Kai Han , Yunhe Wang 2021
This paper studies the efficiency problem for visual transformers by excavating redundant calculation in given networks. The recent transformer architecture has demonstrated its effectiveness for achieving excellent performance on a series of compute r vision tasks. However, similar to that of convolutional neural networks, the huge computational cost of vision transformers is still a severe issue. Considering that the attention mechanism aggregates different patches layer-by-layer, we present a novel patch slimming approach that discards useless patches in a top-down paradigm. We first identify the effective patches in the last layer and then use them to guide the patch selection process of previous layers. For each layer, the impact of a patch on the final output feature is approximated and patches with less impact will be removed. Experimental results on benchmark datasets demonstrate that the proposed method can significantly reduce the computational costs of vision transformers without affecting their performances. For example, over 45% FLOPs of the ViT-Ti model can be reduced with only 0.2% top-1 accuracy drop on the ImageNet dataset.
Recently, Vision Transformers (ViTs) have shown competitive performance on image recognition while requiring less vision-specific inductive biases. In this paper, we investigate if such observation can be extended to image generation. To this end, we integrate the ViT architecture into generative adversarial networks (GANs). We observe that existing regularization methods for GANs interact poorly with self-attention, causing serious instability during training. To resolve this issue, we introduce novel regularization techniques for training GANs with ViTs. Empirically, our approach, named ViTGAN, achieves comparable performance to state-of-the-art CNN-based StyleGAN2 on CIFAR-10, CelebA, and LSUN bedroom datasets.
134 - Sayak Paul , Pin-Yu Chen 2021
Transformers, composed of multiple self-attention layers, hold strong promises toward a generic learning primitive applicable to different data modalities, including the recent breakthroughs in computer vision achieving state-of-the-art (SOTA) standa rd accuracy with better parameter efficiency. Since self-attention helps a model systematically align different components present inside the input data, it leaves grounds to investigate its performance under model robustness benchmarks. In this work, we study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples. We use six different diverse ImageNet datasets concerning robust classification to conduct a comprehensive performance comparison of ViT models and SOTA convolutional neural networks (CNNs), Big-Transfer. Through a series of six systematically designed experiments, we then present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners. For example, with fewer parameters and similar dataset and pre-training combinations, ViT gives a top-1 accuracy of 28.10% on ImageNet-A which is 4.3x higher than a comparable variant of BiT. Our analyses on image masking, Fourier spectrum sensitivity, and spread on discrete cosine energy spectrum reveal intriguing properties of ViT attributing to improved robustness. Code for reproducing our experiments is available here: https://git.io/J3VO0.
385 - Yehui Tang , Kai Han , Chang Xu 2021
Transformer models have achieved great progress on computer vision tasks recently. The rapid development of vision transformers is mainly contributed by their high representation ability for extracting informative features from input images. However, the mainstream transformer models are designed with deep architectures, and the feature diversity will be continuously reduced as the depth increases, i.e., feature collapse. In this paper, we theoretically analyze the feature collapse phenomenon and study the relationship between shortcuts and feature diversity in these transformer models. Then, we present an augmented shortcut scheme, which inserts additional paths with learnable parameters in parallel on the original shortcuts. To save the computational costs, we further explore an efficient approach that uses the block-circulant projection to implement augmented shortcuts. Extensive experiments conducted on benchmark datasets demonstrate the effectiveness of the proposed method, which brings about 1% accuracy increase of the state-of-the-art visual transformers without obviously increasing their parameters and FLOPs.
Convolutional architectures have proven extremely successful for vision tasks. Their hard inductive biases enable sample-efficient learning, but come at the cost of a potentially lower performance ceiling. Vision Transformers (ViTs) rely on more flex ible self-attention layers, and have recently outperformed CNNs for image classification. However, they require costly pre-training on large external datasets or distillation from pre-trained convolutional networks. In this paper, we ask the following question: is it possible to combine the strengths of these two architectures while avoiding their respective limitations? To this end, we introduce gated positional self-attention (GPSA), a form of positional self-attention which can be equipped with a ``soft convolutional inductive bias. We initialise the GPSA layers to mimic the locality of convolutional layers, then give each attention head the freedom to escape locality by adjusting a gating parameter regulating the attention paid to position versus content information. The resulting convolutional-like ViT architecture, ConViT, outperforms the DeiT on ImageNet, while offering a much improved sample efficiency. We further investigate the role of locality in learning by first quantifying how it is encouraged in vanilla self-attention layers, then analysing how it is escaped in GPSA layers. We conclude by presenting various ablations to better understand the success of the ConViT. Our code and models are released publicly at https://github.com/facebookresearch/convit.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا