ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying Actions for Sound Event Classification

373   0   0.0 ( 0 )
 نشر من قبل Benjamin Elizalde
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In Psychology, actions are paramount for humans to identify sound events. In Machine Learning (ML), action recognition achieves high accuracy; however, it has not been asked whether identifying actions can benefit Sound Event Classification (SEC), as opposed to mapping the audio directly to a sound event. Therefore, we propose a new Psychology-inspired approach for SEC that includes identification of actions via human listeners. To achieve this goal, we used crowdsourcing to have listeners identify 20 actions that in isolation or in combination may have produced any of the 50 sound events in the well-studied dataset ESC-50. The resulting annotations for each audio recording relate actions to a database of sound events for the first time. The annotations were used to create semantic representations called Action Vectors (AVs). We evaluated SEC by comparing the AVs with two types of audio features -- log-mel spectrograms and state-of-the-art audio embeddings. Because audio features and AVs capture different abstractions of the acoustic content, we combined them and achieved one of the highest reported accuracies (88%).

قيم البحث

اقرأ أيضاً

92 - Yuxin Huang , Liwei Lin , Shuo Ma 2020
In this paper, we describe in detail our systems for DCASE 2020 Task 4. The systems are based on the 1st-place system of DCASE 2019 Task 4, which adopts weakly-supervised framework with an attention-based embedding-level pooling module and a semi-sup ervised learning approach named guided learning. This year, we incorporate multi-branch learning (MBL) into the original system to further improve its performance. MBL uses different branches with different pooling strategies (including instance-level and embedding-level strategies) and different pooling modules (including attention pooling, global max pooling or global average pooling modules), which share the same feature encoder of the model. Therefore, multiple branches pursuing different purposes and focusing on different characteristics of the data can help the feature encoder model the feature space better and avoid over-fitting. To better exploit the strongly-labeled synthetic data, inspired by multi-task learning, we also employ a sound event detection branch. To combine sound separation (SS) with sound event detection (SED), we fuse the results of SED systems with SS-SED systems which are trained using separated sound output by an SS system. The experimental results prove that MBL can improve the model performance and using SS has great potential to improve the performance of SED ensemble system.
Performing sound event detection on real-world recordings often implies dealing with overlapping target sound events and non-target sounds, also referred to as interference or noise. Until now these problems were mainly tackled at the classifier leve l. We propose to use sound separation as a pre-processing for sound event detection. In this paper we start from a sound separation model trained on the Free Universal Sound Separation dataset and the DCASE 2020 task 4 sound event detection baseline. We explore different methods to combine separated sound sources and the original mixture within the sound event detection. Furthermore, we investigate the impact of adapting the sound separation model to the sound event detection data on both the sound separation and the sound event detection.
Sound event detection (SED) methods typically rely on either strongly labelled data or weakly labelled data. As an alternative, sequentially labelled data (SLD) was proposed. In SLD, the events and the order of events in audio clips are known, withou t knowing the occurrence time of events. This paper proposes a connectionist temporal classification (CTC) based SED system that uses SLD instead of strongly labelled data, with a novel unsupervised clustering stage. Experiments on 41 classes of sound events show that the proposed two-stage method trained on SLD achieves performance comparable to the previous state-of-the-art SED system trained on strongly labelled data, and is far better than another state-of-the-art SED system trained on weakly labelled data, which indicates the effectiveness of the proposed two-stage method trained on SLD without any onset/offset time of sound events.
170 - Heinrich Dinkel , Kai Yu 2019
Task 4 of the DCASE2018 challenge demonstrated that substantially more research is needed for a real-world application of sound event detection. Analyzing the challenge results it can be seen that most successful models are biased towards predicting long (e.g., over 5s) clips. This work aims to investigate the performance impact of fixed-sized window median filter post-processing and advocate the use of double thresholding as a more robust and predictable post-processing method. Further, four different temporal subsampling methods within the CRNN framework are proposed: mean-max, alpha-mean-max, Lp-norm and convolutional. We show that for this task subsampling the temporal resolution by a neural network enhances the F1 score as well as its robustness towards short, sporadic sound events. Our best single model achieves 30.1% F1 on the evaluation set and the best fusion model 32.5%, while being robust to event length variations.
Cardiovascular diseases are the leading cause of deaths and severely threaten human health in daily life. On the one hand, there have been dramatically increasing demands from both the clinical practice and the smart home application for monitoring t he heart status of subjects suffering from chronic cardiovascular diseases. On the other hand, experienced physicians who can perform an efficient auscultation are still lacking in terms of number. Automatic heart sound classification leveraging the power of advanced signal processing and machine learning technologies has shown encouraging results. Nevertheless, human hand-crafted features are expensive and time-consuming. To this end, we propose a novel deep representation learning method with an attention mechanism for heart sound classification. In this paradigm, high-level representations are learnt automatically from the recorded heart sound data. Particularly, a global attention pooling layer improves the performance of the learnt representations by estimating the contribution of each unit in feature maps. The Heart Sounds Shenzhen (HSS) corpus (170 subjects involved) is used to validate the proposed method. Experimental results validate that, our approach can achieve an unweighted average recall of 51.2% for classifying three categories of heart sounds, i. e., normal, mild, and moderate/severe annotated by cardiologists with the help of Echocardiography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا