ﻻ يوجد ملخص باللغة العربية
Performing sound event detection on real-world recordings often implies dealing with overlapping target sound events and non-target sounds, also referred to as interference or noise. Until now these problems were mainly tackled at the classifier level. We propose to use sound separation as a pre-processing for sound event detection. In this paper we start from a sound separation model trained on the Free Universal Sound Separation dataset and the DCASE 2020 task 4 sound event detection baseline. We explore different methods to combine separated sound sources and the original mixture within the sound event detection. Furthermore, we investigate the impact of adapting the sound separation model to the sound event detection data on both the sound separation and the sound event detection.
This paper presents DCASE 2018 task 4. The task evaluates systems for the large-scale detection of sound events using weakly labeled data (without time boundaries). The target of the systems is to provide not only the event class but also the event t
In this paper, we describe in detail our systems for DCASE 2020 Task 4. The systems are based on the 1st-place system of DCASE 2019 Task 4, which adopts weakly-supervised framework with an attention-based embedding-level pooling module and a semi-sup
Training a sound event detection algorithm on a heterogeneous dataset including both recorded and synthetic soundscapes that can have various labeling granularity is a non-trivial task that can lead to systems requiring several technical choices. The
We propose a benchmark of state-of-the-art sound event detection systems (SED). We designed synthetic evaluation sets to focus on specific sound event detection challenges. We analyze the performance of the submissions to DCASE 2021 task 4 depending
Task 4 of the DCASE2018 challenge demonstrated that substantially more research is needed for a real-world application of sound event detection. Analyzing the challenge results it can be seen that most successful models are biased towards predicting