ﻻ يوجد ملخص باللغة العربية
The vector space of holomorphic polyvector fields on any complex manifold has a natural Gerstenhaber algebra structure. In this paper, we study BV operators of the Gerstenhaber algebras of holomorphic polyvector fields on smooth compact toric varieties. We give a necessary and sufficient condition for the existence of BV operators of the Gerstenhaber algebra of holomorphic polyvector fields on any smooth compact toric variety.
We reproduce the quantum cohomology of toric varieties (and of some hypersurfaces in projective spaces) as the cohomology of certain vertex algebras with differential. The deformation technique allows us to compute the cohomology of the chiral de Rham complex over the projective space.
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat
We prove that the space of coinvariants of functions on an affine variety by a Lie algebra of vector fields whose flow generates finitely many leaves is finite-dimensional. Cases of the theorem include Poisson (or more generally Jacobi) varieties wit
For an affine toric variety $spec(A)$, we give a convex geometric interpretation of the Gerstenhaber product $HH^2(A)times HH^2(A)to HH^3(A)$ between the Hochschild cohomology groups. In the case of Gorenstein toric surfaces we prove that the Gersten
In this paper we give a geometric characterization of the cones of toric varieties that are complete intersections. In particular, we prove that the class of complete intersection cones is the smallest class of cones which is closed under direct sum