ﻻ يوجد ملخص باللغة العربية
The swift transitions in higher education after the COVID-19 outbreak identified a gap in the pedagogical support available to faculty. We propose a smart, knowledge-based chatbot that addresses issues of knowledge distillation and provides faculty with personalized recommendations. Our collaborative system crowdsources useful pedagogical practices and continuously filters recommendations based on theory and user feedback, thus enhancing the experiences of subsequent peers. We build a prototype for our local STEM faculty as a proof concept and receive favorable feedback that encourages us to extend our development and outreach, especially to underresourced faculty.
An enduring issue in higher education is student retention to successful graduation. National statistics indicate that most higher education institutions have four-year degree completion rates around 50 percent, or just half of their student populati
Recommender systems are present in many web applications to guide our choices. They increase sales and benefit sellers, but whether they benefit customers by providing relevant products is questionable. Here we introduce a model to examine the benefi
We study a model of user decision-making in the context of recommender systems via numerical simulation. Our model provides an explanation for the findings of Nguyen, et. al (2014), where, in environments where recommender systems are typically deplo
A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that object
Session-based Recurrent Neural Networks (RNNs) are gaining increasing popularity for recommendation task, due to the high autocorrelation of users behavior on the latest session and the effectiveness of RNN to capture the sequence order information.