ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Recommender System based on Autoencoders

68   0   0.0 ( 0 )
 نشر من قبل Florian Strub
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that objective with Neural Networks, but recently an architecture based on Autoencoders proved to be a promising approach. In current paper, we enhanced that architecture (i) by using a loss function adapted to input data with missing values, and (ii) by incorporating side information. The experiments demonstrate that while side information only slightly improve the test error averaged on all users/items, it has more impact on cold users/items.

قيم البحث

اقرأ أيضاً

Recommender systems are mostly well known for their applications in e-commerce sites and are mostly static models. Classical personalized recommender algorithm includes item-based collaborative filtering method applied in Amazon, matrix factorization based collaborative filtering algorithm from Netflix, etc. In this article, we hope to combine traditional model with behavior pattern extraction method. We use desensitized mobile transaction record provided by T-mall, Alibaba to build a hybrid dynamic recommender system. The sequential pattern mining aims to find frequent sequential pattern in sequence database and is applied in this hybrid model to predict customers payment behavior thus contributing to the accuracy of the model.
129 - Mei Wang , Weizhi Li , Yan Yan 2019
Session-based Recurrent Neural Networks (RNNs) are gaining increasing popularity for recommendation task, due to the high autocorrelation of users behavior on the latest session and the effectiveness of RNN to capture the sequence order information. However, most existing session-based RNN recommender systems still solely focus on the short-term interactions within a single session and completely discard all the other long-term data across different sessions. While traditional Collaborative Filtering (CF) methods have many advanced research works on exploring long-term dependency, which show great value to be explored and exploited in deep learning models. Therefore, in this paper, we propose ASARS, a novel framework that effectively imports the temporal dynamics methodology in CF into session-based RNN system in DL, such that the temporal info can act as scalable weights by a parallel attentional network. Specifically, we first conduct an extensive data analysis to show the distribution and importance of such temporal interactions data both within sessions and across sessions. And then, our ASARS framework promotes two novel models: (1) an inter-session temporal dynamic model that captures the long-term user interaction for RNN recommender system. We integrate the time changes in session RNN and add user preferences as model drifting; and (2) a novel triangle parallel attention network that enhances the original RNN model by incorporating time information. Such triangle parallel network is also specially designed for realizing data argumentation in sequence-to-scalar RNN architecture, and thus it can be trained very efficiently. Our extensive experiments on four real datasets from different domains demonstrate the effectiveness and large improvement of ASARS for personalized recommendation.
In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.
82 - Siyi Liu , Chen Gao , Yihong Chen 2021
The embedding-based representation learning is commonly used in deep learning recommendation models to map the raw sparse features to dense vectors. The traditional embedding manner that assigns a uniform size to all features has two issues. First, t he numerous features inevitably lead to a gigantic embedding table that causes a high memory usage cost. Second, it is likely to cause the over-fitting problem for those features that do not require too large representation capacity. Existing works that try to address the problem always cause a significant drop in recommendation performance or suffers from the limitation of unaffordable training time cost. In this paper, we proposed a novel approach, named PEP (short for Plug-in Embedding Pruning), to reduce the size of the embedding table while avoiding the drop of recommendation accuracy. PEP prunes embedding parameter where the pruning threshold(s) can be adaptively learned from data. Therefore we can automatically obtain a mixed-dimension embedding-scheme by pruning redundant parameters for each feature. PEP is a general framework that can plug in various base recommendation models. Extensive experiments demonstrate it can efficiently cut down embedding parameters and boost the base models performance. Specifically, it achieves strong recommendation performance while reducing 97-99% parameters. As for the computation cost, PEP only brings an additional 20-30% time cost compared with base models. Codes are available at https://github.com/ssui-liu/learnable-embed-sizes-for-RecSys.
Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value e mpirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to models validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا