ﻻ يوجد ملخص باللغة العربية
In this manuscript we define Vassiliev measures of complexity for open curves in 3-space. These are related to the coefficients of the enhanced Jones polynomial of open curves in 3-space. These Vassiliev measures are continuous functions of the curve coordinates and as the ends of the curve tend to coincide, they converge to the corresponding Vassiliev invariants of the resulting knot. We focus on the second Vassiliev measure from the enhanced Jones polynomial for closed and open curves in 3-space. For closed curves, this second Vassiliev measure can be computed by a Gauss code diagram and it has an integral formulation, the double alternating self-linking integral. The double alternating self-linking integral is a topological invariant for closed curves and a continuous function of the curve coordinates for open curves in 3-space. For polygonal curves, the double alternating self-linking integral obtains a simpler expression in terms of geometric probabilities. For a polygonal curve with 4 edges, the double alternating self-linking integral coincides with the signed geometric probability of obtaining the knotoid k2.1 in a random projection direction.
We calculate the rational equivariant cohomology of the spaces of non-contractible loops in compact space forms and show how to apply these calculations for proving the existence of closed geodesics.
Given two finite covers $p: X to S$ and $q: Y to S$ of a connected, oriented, closed surface $S$ of genus at least $2$, we attempt to characterize the equivalence of $p$ and $q$ in terms of which curves lift to simple curves. Using Teichmuller theory
It is well known that a triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and o
We construct a natural framed weight system on chord diagrams from the curvature tensor of any pseudo-Riemannian symmetric space. These weight systems are of Lie algebra type and realized by the action of the holonomy Lie algebra on a tangent space.
We present a practical algorithm to test whether a 3-manifold given by a triangulation or an ideal triangulation contains a closed essential surface. This property has important theoretical and algorithmic consequences. As a testament to its practica