The bin-packing problem continues to remain relevant in numerous application areas. This technical report discusses the empirical performance of different bin-packing heuristics for certain test problems.
We consider a game-theoretical problem called selfish 2-dimensional bin packing game, a generalization of the 1-dimensional case already treated in the literature. In this game, the items to be packed are rectangles, and the bins are unit squares. Th
e game starts with a set of items arbitrarily packed in bins. The cost of an item is defined as the ratio between its area and the total occupied area of the respective bin. Each item is a selfish player that wants to minimize its cost. A migration of an item to another bin is allowed only when its cost is decreased. We show that this game always converges to a Nash equilibrium (a stable packing where no single item can decrease its cost by migrating to another bin). We show that the pure price of anarchy of this game is unbounded, so we address the particular case where all items are squares. We show that the pure price of anarchy of the selfish square packing game is at least 2.3634 and at most 2.6875. We also present analogous results for the strong Nash equilibrium (a stable packing where no nonempty set of items can simultaneously migrate to another common bin and decrease the cost of each item in the set). We show that the strong price of anarchy when all items are squares is at least 2.0747 and at most 2.3605.
We study emph{parallel} online algorithms: For some fixed integer $k$, a collective of $k$ parallel processes that perform online decisions on the same sequence of events forms a $k$-emph{copy algorithm}. For any given time and input sequence, th
e overall performance is determined by the best of the $k$ individual total results. Problems of this type have been considered for online makespan minimization; they are also related to optimization with emph{advice} on future events, i.e., a number of bits available in advance. We develop textsc{Predictive Harmonic}$_3$ (PH3), a relatively simple family of $k$-copy algorithms for the online Bin Packing Problem, whose joint competitive factor converges to 1.5 for increasing $k$. In particular, we show that $k=6$ suffices to guarantee a factor of $1.5714$ for PH3, which is better than $1.57829$, the performance of the best known 1-copy algorithm textsc{Advanced Harmonic}, while $k=11$ suffices to achieve a factor of $1.5406$, beating the known lower bound of $1.54278$ for a single online algorithm. In the context of online optimization with advice, our approach implies that 4 bits suffice to achieve a factor better than this bound of $1.54278$, which is considerably less than the previous bound of 15 bits.
We tackle the Online 3D Bin Packing Problem, a challenging yet practically useful variant of the classical Bin Packing Problem. In this problem, the items are delivered to the agent without informing the full sequence information. Agent must directly
pack these items into the target bin stably without changing their arrival order, and no further adjustment is permitted. Online 3D-BPP can be naturally formulated as Markov Decision Process (MDP). We adopt deep reinforcement learning, in particular, the on-policy actor-critic framework, to solve this MDP with constrained action space. To learn a practically feasible packing policy, we propose three critical designs. First, we propose an online analysis of packing stability based on a novel stacking tree. It attains a high analysis accuracy while reducing the computational complexity from $O(N^2)$ to $O(N log N)$, making it especially suited for RL training. Second, we propose a decoupled packing policy learning for different dimensions of placement which enables high-resolution spatial discretization and hence high packing precision. Third, we introduce a reward function that dictates the robot to place items in a far-to-near order and therefore simplifies the collision avoidance in movement planning of the robotic arm. Furthermore, we provide a comprehensive discussion on several key implemental issues. The extensive evaluation demonstrates that our learned policy outperforms the state-of-the-art methods significantly and is practically usable for real-world applications.
The superiorization methodology is intended to work with input data of constrained minimization problems, i.e., a target function and a constraints set. However, it is based on an antipodal way of thinking to the thinking that leads constrained minim
ization methods. Instead of adapting unconstrained minimization algorithms to handling constraints, it adapts feasibility-seeking algorithms to reduce (not necessarily minimize) target function values. This is done while retaining the feasibility-seeking nature of the algorithm and without paying a high computational price. A guarantee that the local target function reduction steps properly accumulate to a global target function value reduction is still missing in spite of an ever-growing body of publications that supply evidence of the success of the superiorization method in various problems. We propose an analysis based on the principle of concentration of measure that attempts to alleviate the guarantee question of the superiorization method.
The Split Packing algorithm cite{splitpacking_ws, splitpackingsoda, splitpacking} is an offline algorithm that packs a set of circles into triangles and squares up to critical density. In this paper, we develop an online alternative to Split Packing
to handle an online sequence of insertions and deletions, where the algorithm is allowed to reallocate circles into new positions at a cost proportional to their areas. The algorithm can be used to pack circles into squares and right angled triangles. If only insertions are considered, our algorithm is also able to pack to critical density, with an amortised reallocation cost of $O(clog frac{1}{c})$ for squares, and $O(c(1+s^2)log_{1+s^2}frac{1}{c})$ for right angled triangles, where $s$ is the ratio of the lengths of the second shortest side to the shortest side of the triangle, when inserting a circle of area $c$. When insertions and deletions are considered, we achieve a packing density of $(1-epsilon)$ of the critical density, where $epsilon>0$ can be made arbitrarily small, with an amortised reallocation cost of $O(c(1+s^2)log_{1+s^2}frac{1}{c} + cfrac{1}{epsilon})$.