ﻻ يوجد ملخص باللغة العربية
We study emph{parallel} online algorithms: For some fixed integer $k$, a collective of $k$ parallel processes that perform online decisions on the same sequence of events forms a $k$-emph{copy algorithm}. For any given time and input sequence, the overall performance is determined by the best of the $k$ individual total results. Problems of this type have been considered for online makespan minimization; they are also related to optimization with emph{advice} on future events, i.e., a number of bits available in advance. We develop textsc{Predictive Harmonic}$_3$ (PH3), a relatively simple family of $k$-copy algorithms for the online Bin Packing Problem, whose joint competitive factor converges to 1.5 for increasing $k$. In particular, we show that $k=6$ suffices to guarantee a factor of $1.5714$ for PH3, which is better than $1.57829$, the performance of the best known 1-copy algorithm textsc{Advanced Harmonic}, while $k=11$ suffices to achieve a factor of $1.5406$, beating the known lower bound of $1.54278$ for a single online algorithm. In the context of online optimization with advice, our approach implies that 4 bits suffice to achieve a factor better than this bound of $1.54278$, which is considerably less than the previous bound of 15 bits.
In the $d$-dimensional hypercube bin packing problem, a given list of $d$-dimensional hypercubes must be packed into the smallest number of hypercube bins. Epstein and van Stee [SIAM J. Comput. 35 (2005)] showed that the asymptotic performance ratio
We consider the online problem of packing circles into a square container. A sequence of circles has to be packed one at a time, without knowledge of the following incoming circles and without moving previously packed circles. We present an algorithm
We tackle the Online 3D Bin Packing Problem, a challenging yet practically useful variant of the classical Bin Packing Problem. In this problem, the items are delivered to the agent without informing the full sequence information. Agent must directly
The bin covering problem asks for covering a maximum number of bins with an online sequence of $n$ items of different sizes in the range $(0,1]$; a bin is said to be covered if it receives items of total size at least 1. We study this problem in the
We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsa