ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring mutual information between IRIS spectral lines. I. Correlations between spectral lines during solar flares and within the quiet Sun

284   0   0.0 ( 0 )
 نشر من قبل Brandon Panos Mr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectral lines allow us to probe the thermodynamics of the solar atmosphere, but the shape of a single spectral line may be similar for different thermodynamic solutions. Multiline analyses are therefore crucial, but computationally cumbersome. We investigate correlations between several chromospheric and transition region lines to restrain the thermodynamic solutions of the solar atmosphere during flares. We used machine-learning methods to capture the statistical dependencies between 6 spectral lines sourced from 21 large solar flares observed by NASAs Interface Region Imaging Spectrograph (IRIS). The techniques are based on an information-theoretic quantity called mutual information (MI), which captures both linear and nonlinear correlations between spectral lines. The MI is estimated using both a categorical and numeric method, and performed separately for a collection of quiet Sun and flaring observations. Both approaches return consistent results, indicating weak correlations between spectral lines under quiet Sun conditions, and substantially enhanced correlations under flaring conditions, with some line-pairs such as Mg II and C II having a normalized MI score as high as 0.5. We find that certain spectral lines couple more readily than others, indicating a coherence in the solar atmosphere over many scale heights during flares, and that all line-pairs are correlated to the GOES derivative, indicating a positive relationship between correlation strength and energy input. Our methods provide a highly stable and flexible framework for quantifying dependencies between the physical quantities of the solar atmosphere, allowing us to obtain a three-dimensional picture of its state.

قيم البحث

اقرأ أيضاً

A three-dimensional picture of the solar atmospheres thermodynamics can be obtained by jointly analyzing multiple spectral lines that span many formation heights. In paper I, we found strong correlations between spectral shapes from a variety of diff erent ions during solar flares in comparison to the quiet Sun. We extend these techniques to address the following questions: which regions of the solar atmosphere are most connected during a solar flare, and what are the most likely responses across several spectral windows based on the observation of a single Mg II spectrum? Our models are derived from several million IRIS spectra collected from 21 M- and X-class flares. We applied this framework to archetypal Mg II flare spectra, and analyzed the results from a multi-line perspective. We find that (1) the line correlations from the photosphere to the transition region are highest in flare ribbons. (2) Blue-shifted reversals appear simultaneously in Mg II, C II, and Si IV during the impulsive phase, with Si IV displaying possible optical depth effects. Fe II shows signs of strong emission, indicating deep early heating. (3) The Mg II line appears to typically evolve a blue-shifted reversal that later returns to line center and becomes single peaked within 1-3 minutes. The widths of these single peaked profiles slowly erode with time. During the later flare stages, strong red wing enhancements indicating coronal rain are evident in Mg II, C II, and Si IV. Our framework is easily adaptable to any multi-line data set, and enables comprehensive statistical analyses of the atmospheric behavior in different spectral windows.
The bulk of the radiative output of a solar flare is emitted from the chromosphere, which produces enhancements in the optical and UV continuum, and in many lines, both optically thick and thin. We have, until very recently, lacked observations of tw o of the strongest of these lines: the Mg II h & k resonance lines. We present a detailed study of the response of these lines to a solar flare. The spatial and temporal behaviour of the integrated intensities, k/h line ratios, line of sight velocities, line widths and line asymmetries were investigated during an M class flare (SOL2014-02-13T01:40). Very intense, spatially localised energy input at the outer edge of the ribbon is observed, resulting in redshifts equivalent to velocities of ~15-26km/s, line broadenings, and a blue asymmetry in the most intense sources. The characteristic central reversal feature that is ubiquitous in quiet Sun observations is absent in flaring profiles, indicating that the source function increases with height during the flare. Despite the absence of the central reversal feature, the k/h line ratio indicates that the lines remain optically thick during the flare. Subordinate lines in the Mg II passband are observed to be in emission in flaring sources, brightening and cooling with similar timescales to the resonance lines. This work represents a first analysis of potential diagnostic information of the flaring atmosphere using these lines, and provides observations to which synthetic spectra from advanced radiative transfer codes can be compared.
(Abridged) We use optical spectroscopy to investigate the disk, wind, and accretion during the 2008 ZCMa NW outburst. Over 1000 optical emission lines reveal accretion, a variable, multi-component wind, and double-peaked lines of disk origin. The var iable, non-axisymmetric, accretion-powered wind has slow ($sim $0 km s$^{-1}$), intermediate ($sim -$100 km s$^{-1}$) and fast ($geq -$400 km s$^{-1}$) components. The fast components are of stellar origin and disappear in quiescence, while the slow component is less variable and could be related to a disk wind. The changes in the optical depth of the lines between outburst and quiescence are consistent with increased accretion being responsible for the observed outburst. We derive an accretion rate of 10$^{-4}$ M$_odot$/yr in outburst. The Fe I and weak Fe II lines arise from an irradiated, flared disk at $sim$0.5-3 $times$M$_*$/16M$_odot$ au with asymmetric upper layers, revealing that the energy from the accretion burst is deposited at scales below 0.5 au. Some line profiles have redshifted asymmetries, but the system is unlikely sustained by magnetospheric accretion, especially in outburst. The accretion-related structures extend over several stellar radii and, like the wind, are likely non-axisymmetric. The stellar mass may be $sim$6-8 M$_odot$, lower than previously thought ($sim$16 M$_odot$). Emission line analysis is found to be a powerful tool to study the innermost regions and accretion in stars within a very large range of effective temperatures. The density ranges in the disk and accretion structures are higher than in late-type stars, but the overall behavior, including the innermost disk emission and variable wind, is very similar independently of the spectral type. Our work suggests a common outburst behavior for stars with spectral types ranging from M-type to intermediate-mass stars.
Vertical magnetic fields have been known to exist in the internetwork region for decades, while the properties of horizontal magnetic fields have recently been extensively investigated with textit{Hinode}. Vertical and horizontal magnetic fields in t he internetwork region are considered to be separate entities and have thus far not been investigated in a unified way. We discover clear positional association between the vertical and horizontal magnetic fields in the internetwork region with textit{Hinode}. Essentially all of the horizontal magnetic patches are associated with the vertical magnetic patches. Alternatively, half of the vertical magnetic patches accommodate the horizontal magnetic patches. These horizontal patches are located around the borders of the vertical patches. The intrinsic magnetic field strength as obtained with the Stokes $V$ line ratio inside the horizontal patches is weak, and is in sub-equipartition field regime ($B<700$ G), while the field strength outside the horizontal patches ranges from weak to strong (kG) fields. Vertical magnetic patches are known to be concentrated on mesogranular and supergranular boundaries, while the horizontal magnetic patches are found only on the mesogranular boundaries. These observations provide us with new information on the origin of the vertical and horizontal internetwork magnetic fields, in a unified way. We conjecture that internetwork magnetic fields are provided by emergence of small-scale flux tubes with bipolar footpoints, and the vertical magnetic fields of the footpoints are intensified to kG fields due to convective collapse. Resultant strong vertical fields are advected by the supergranular flow, and eventually form the network fields.
Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا