ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic framework for determining laminar pattern bifurcations by lateral-inhibition in 2D and 3D bilayer geometries

63   0   0.0 ( 0 )
 نشر من قبل Joshua Moore
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fine-grain patterns produced by juxtacrine signalling, have been studied using static monolayers as cellular domains. Unfortunately, analytical results are restricted to a few cells due to the algebraic complexity of nonlinear dynamical systems. Motivated by concentric patterning of Notch expression observed in the mammary gland, we combine concepts from graph and control theory to represent cellular connectivity. The resulting theoretical framework allows us to exploit the symmetry of multicellular bilayer structures in 2D and 3D, thereby deriving analytical conditions that drive the dynamical system to form laminar patterns consistent with the formulation of cell polarity. Critically, the conditions are independent of the precise dynamical details, thus the framework allows for the utmost generality in understanding the influence of cellular geometry on patterning in lateral-inhibition systems. Applying the analytic conditions to mammary organoids suggests that intense cell signalling polarity is required for the maintenance of stratified cell-types within a static bilayer using a lateral-inhibition mechanism. Furthermore, by employing 2D and 3D cell-based models, we highlight that the cellular polarity conditions derived from static domains have the capacity to generate laminar patterning in dynamic environments. However, they are insufficient for the maintenance of patterning when subjected to substantial morphological perturbations. In agreement with the mathematical implications of strict signalling polarity induced on the cells, we propose an adhesion dependent Notch-Delta biological process which has the potential to initiate bilayer stratification in a developing mammary organoid.

قيم البحث

اقرأ أيضاً

Multipotent differentiation, where cells adopt one of several cell fates, is a determinate and orchestrated procedure that often incorporates stochastic mechanisms in order to diversify cell types. How these stochastic phenomena interact to govern ce ll fate are poorly understood. Nonetheless, cell fate decision making procedure is mainly regulated through the activation of differentiation waves and associated signaling pathways. In the current work, we focus on the Notch/Delta signaling pathway which is not only known to trigger such waves but also is used to achieve the principle of lateral inhibition, i.e. a competition for exclusive fates through cross-signaling between neighboring cells. Such a process ensures unambiguous stochastic decisions influenced by intrinsic noise sources, e.g.~as ones found in the regulation of signaling pathways, and extrinsic stochastic fluctuations, attributed to micro-environmental factors. However, the effect of intrinsic and extrinsic noise on cell fate determination is an open problem. Our goal is to elucidate how the induction of extrinsic noise affects cell fate specification in a lateral inhibition mechanism. Using a stochastic Cellular Automaton with continuous state space, we show that extrinsic noise results in the emergence of steady-state furrow patterns of cells in a frustrated/transient phenotypic state.
We present a framework to transform the problem of finding a Lyapunov function of a Chemical Reaction Network (CRN) in concentration coordinates with arbitrary monotone kinetics into finding a common Lyapunov function for a linear parameter varying s ystem in reaction coordinates. Alternative formulations of the proposed Lyapunov function is presented also. This is applied to reinterpret previous results by the authors on Piecewise Linear in Rates Lyapunov functions, and to establish a link with contraction analysis. Persistence and uniqueness of equilibria are discussed also.
136 - K. B. Blyuss , S. Gupta 2012
We examine the properties of a recently proposed model for antigenic variation in malaria which incorporates multiple epitopes and both long-lasting and transient immune responses. We show that in the case of a vanishing decay rate for the long-lasti ng immune response, the system exhibits the so-called bifurcations without parameters due to the existence of a hypersurface of equilibria in the phase space. When the decay rate of the long-lasting immune response is different from zero, the hypersurface of equilibria degenerates, and a multitude of other steady states are born, many of which are related by a permutation symmetry of the system. The robustness of the fully symmetric state of the system was investigated by means of numerical computation of transverse Lyapunov exponents. The results of this exercise indicate that for a vanishing decay of long-lasting immune response, the fully symmetric state is not robust in the substantial part of the parameter space, and instead all variants develop their own temporal dynamics contributing to the overall time evolution. At the same time, if the decay rate of the long-lasting immune response is increased, the fully symmetric state can become robust provided the growth rate of the long-lasting immune response is rapid.
The rational development of specific inhibitors for the ~500 protein kinases encoded in the human genome is impeded by a poor understanding of the structural basis for the activity and selectivity of small molecules that compete for ATP binding. Comb ining classical dynamic simulations with a novel ab initio computational approach linear-scalable to molecular interactions involving thousands of atoms, we have investigated the binding of five distinct inhibitors to the cyclin-dependent kinase CDK2. We report here that polarization and dynamic hydrogen bonding effects, so far undetected by crystallography, affect both their activity and selectivity. The effects arise from the specific solvation patterns of water molecules in the ATP binding pocket or the intermittent formation of hydrogen bonds during the dynamics of CDK/inhibitor interactions and explain the unexpectedly high potency of certain inhibitors such as 3-(3H-imidazol-4-ylmethylene)-5-methoxy-1,3-dihydro-indol-2-one (SU9516). The Lys89 residue in the ATP-binding pocket of CDK2 is observed to form temporary hydrogen bonds with the three most potent inhibitors. This residue is replaced in CDK4 by Thr89, whose shorter side-chain cannot form similar bonds, explaining the relative selectivity of the inhibitors for CDK2. Our results provide a generally applicable computational method for the analysis of biomolecular structures and reveal hitherto unrecognized features of the interaction between protein kinases and their inhibitors
We report the first systematic study of designed two-input biochemical systems as information processing gates with favorable noise-transmission properties accomplished by modifying the gates response from convex shape to sigmoid in both inputs. This is realized by an added chemical filter process which recycles some of the output back into one of the inputs. We study a system involving the biocatalytic function of the enzyme horseradish peroxidase, functioning as an AND gate. We consider modularity properties, such as the use of three different input chromogens that, when oxidized yield signal-detection outputs for various ranges of the primary input, hydrogen peroxide. We also examine possible uses of different filter-effect chemicals (reducing agents) to induce the sigmoid-response. A modeling approach is developed and applied to our data, allowing us to describe the enzymatic kinetics in the framework of a formulation suitable for evaluating the noise-handling properties of the studied systems as logic gates for information processing steps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا