ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularity of shape optimizers for some spectral fractional problems

138   0   0.0 ( 0 )
 نشر من قبل Giorgio Tortone
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Giorgio Tortone




اسأل ChatGPT حول البحث

This paper is dedicated to the spectral optimization problem $$ mathrm{min}left{lambda_1^s(Omega)+cdots+lambda_m^s(Omega) + Lambda mathcal{L}_n(Omega)colon Omegasubset D mbox{ s-quasi-open}right} $$ where $Lambda>0, Dsubset mathbb{R}^n$ is a bounded open set and $lambda_i^s(Omega)$ is the $i$-th eigenvalues of the fractional Laplacian on $Omega$ with Dirichlet boundary condition on $mathbb{R}^nsetminus Omega$. We first prove that the first $m$ eigenfunctions on an optimal set are locally H{o}lder continuous in the class $C^{0,s}$ and, as a consequence, that the optimal sets are open sets. Then, via a blow-up analysis based on a Weiss type monotonicity formula, we prove that the topological boundary of a minimizer $Omega$ is composed of a relatively open regular part and a closed singular part of Hausdorff dimension at most $n-n^*$, for some $n^*geq 3$. Finally we use a viscosity approach to prove $C^{1,alpha}$-regularity of the regular part of the boundary.



قيم البحث

اقرأ أيضاً

This article concerns with the global Holder regularity of weak solutions to a class of problems involving the fractional $(p,q)$-Laplacian, denoted by $(-Delta)^{s_1}_{p}+(-Delta)^{s_2}_{q}$, for $1<p,q<infty$ and $s_1,s_2in (0,1)$. We use a suitabl e Caccioppoli inequality and local boundedness result in order to prove the weak Harnack type inequality. Consequently, by employing a suitable iteration process, we establish the interior Holder regularity for local weak solutions, which need not be assumed bounded. The global Holder regularity result we prove expands and improves the regularity results of Giacomoni, Kumar and Sreenadh (arXiv: 2102.06080) to the subquadratic case (that is, $q<2$) and more general right hand side, which requires a different and new approach. Moreover, we establish a nonlocal Harnack type inequality for weak solutions, which is of independent interest.
361 - S. A. Marano , S. Mosconi 2019
The general stability problem of truncations for a family of functions concentrating mass at the origin is described and a concrete example in the framework of entire optimizers for the fractional Hardy-Sobolev inequality is given. In this short note we point out some quantitative stability estimates, useful in dealing with critical $p-q$ fractional equations.
We study the obstacle problem for parabolic operators of the type $partial_t + L$, where $L$ is an elliptic integro-differential operator of order $2s$, such as $(-Delta)^s$, in the supercritical regime $s in (0,frac{1}{2})$. The best result in this context was due to Caffarelli and Figalli, who established the $C^{1,s}_x$ regularity of solutions for the case $L = (-Delta)^s$, the same regularity as in the elliptic setting. Here we prove for the first time that solutions are actually textit{more} regular than in the elliptic case. More precisely, we show that they are $C^{1,1}$ in space and time, and that this is optimal. We also deduce the $C^{1,alpha}$ regularity of the free boundary. Moreover, at all free boundary points $(x_0,t_0)$, we establish the following expansion: $$(u - varphi)(x_0+x,t_0+t) = c_0(t - acdot x)_+^2 + O(t^{2+alpha}+|x|^{2+alpha}),$$ with $c_0 > 0$, $alpha > 0$ and $a in mathbb R^n$.
This article addresses the regularity issue for stationary or minimizing fractional harmonic maps into spheres of order $sin(0,1)$ in arbitrary dimensions. It is shown that such fractional harmonic maps are $C^infty$ away from a small closed singular set. The Hausdorff dimension of the singular set is also estimated in terms of $sin(0,1)$ and the stationarity/minimality assumption.
We consider a pseudo-differential equation driven by the fractional $p$-Laplacian with $pge 2$ (degenerate case), with a bounded reaction $f$ and Dirichlet type conditions in a smooth domain $Omega$. By means of barriers, a nonlocal superposition pri nciple, and the comparison principle, we prove that any weak solution $u$ of such equation exhibits a weighted Holder regularity up to the boundary, that is, $u/d^sin C^alpha(overlineOmega)$ for some $alphain(0,1)$, $d$ being the distance from the boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا