ﻻ يوجد ملخص باللغة العربية
This article addresses the regularity issue for stationary or minimizing fractional harmonic maps into spheres of order $sin(0,1)$ in arbitrary dimensions. It is shown that such fractional harmonic maps are $C^infty$ away from a small closed singular set. The Hausdorff dimension of the singular set is also estimated in terms of $sin(0,1)$ and the stationarity/minimality assumption.
In this article, we improve the partial regularity theory for minimizing $1/2$-harmonic maps in the case where the target manifold is the $(m-1)$-dimensional sphere. For $mgeq 3$, we show that minimizing $1/2$-harmonic maps are smooth in dimension 2,
This paper is devoted to the asymptotic analysis of a fractional version of the Ginzburg-Landau equation in bounded domains, where the Laplacian is replaced by an integro-differential operator related to the square root Laplacian as defined in Fourie
In this paper, we will study the partial regularity theorem for stationary harmonic maps from a Riemannian manifold into a Lorentzian manifold. For a weakly stationary harmonic map $(u,v)$ from a smooth bounded open domain $OmegasubsetR^m$ to a Loren
In this paper, we prove the Lipschitz regularity of continuous harmonic maps from an finite dimensional Alexandrov space to a compact smooth Riemannian manifold. This solves a conjecture of F. H. Lin in cite{lin97}. The proof extends the argument of Huang-Wang cite {hua-w10}.
We prove an $epsilon$-regularity theorem for vector-valued p-harmonic maps, which are critical with respect to a partially free boundary condition, namely that they map the boundary into a round sphere. This does not seem to follow from the reflect