ﻻ يوجد ملخص باللغة العربية
Quotient space is a class of the most important topological spaces in the research of topology. In this paper, we show that if G is a strongly topological gyrogroup with a symmetric neighborhood base U at 0 and H is an admissible subgyrogroup generated from U , then G/H is first-countable if and only if it is metrizable. Moreover, if H is neutral and G/H is Frechet-Urysohn with an {omega}{omega}-base, then G/H is first-countable. Therefore, we obtain that if H is neutral, then G/H is metrizable if and only if G/H is Frechet-Urysohn with an {omega}{omega}-base. Finally, it is shown that if H is neutral, {pi}c{hi}(G/H) = c{hi}(G/H) and {pi}{omega}(G/H) = {omega}(G/H).
In this paper, some generalized metric properties in strongly topological gyrogroups are studied.
Separability is one of the most basic and important topological properties. In this paper, the separability in (strongly) topological gyrogroups is studied. It is proved that every first-countable left {omega}-narrow strongly topological gyrogroup is
Topological gyrogroups, with a weaker algebraic structure without associative law, have been investigated recently. We prove that each $T_{0}$-strongly topological gyrogroup is completely regular. We also prove that every $T_{0}$-strongly topological
A space $X$ is submaximal if any dense subset of $X$ is open. In this paper, we prove that every submaximal topological gyrogroup of non-measurable cardinality is strongly $sigma$-discrete. Moreover, we prove that every submaximal strongly topologica
Our main problem is to find finite topological spaces to within homeomorphism, given (also to within homeomorphism) the quotient-spaces obtained by identifying one point of the space with each one of the other points. In a previous version of this pa