ترغب بنشر مسار تعليمي؟ اضغط هنا

How to find finite topological spaces with given quotient-spaces

108   0   0.0 ( 0 )
 نشر من قبل J. M. S. Sim\\~oes-Pereira
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Our main problem is to find finite topological spaces to within homeomorphism, given (also to within homeomorphism) the quotient-spaces obtained by identifying one point of the space with each one of the other points. In a previous version of this paper, our aim was to reconstruct a topological space from its quotient-spaces; but a reconstruction is not always possible either in the sense that several non-homeomorphic topological spaces yield the same quotient-spaces, or in the sense that no topological space yields an arbitrarily given family of quotient-spaces. In this version of the paper we present an algorithm that detects, and deals with, all these situations.



قيم البحث

اقرأ أيضاً

117 - Meng Bao , Jie Wang , Xiaoquan Xu 2021
Quotient space is a class of the most important topological spaces in the research of topology. In this paper, we show that if G is a strongly topological gyrogroup with a symmetric neighborhood base U at 0 and H is an admissible subgyrogroup generat ed from U , then G/H is first-countable if and only if it is metrizable. Moreover, if H is neutral and G/H is Frechet-Urysohn with an {omega}{omega}-base, then G/H is first-countable. Therefore, we obtain that if H is neutral, then G/H is metrizable if and only if G/H is Frechet-Urysohn with an {omega}{omega}-base. Finally, it is shown that if H is neutral, {pi}c{hi}(G/H) = c{hi}(G/H) and {pi}{omega}(G/H) = {omega}(G/H).
For a non-isolated point $x$ of a topological space $X$ the network character $nw_chi(x)$ is the smallest cardinality of a family of infinite subsets of $X$ such that each neighborhood $O(x)$ of $x$ contains a set from the family. We prove that (1) e ach infinite compact Hausdorff space $X$ contains a non-isolated point $x$ with $nw_chi(x)=aleph_0$; (2) for each point $xin X$ with countable character there is an injective sequence in $X$ that $F$-converges to $x$ for some meager filter $F$ on $omega$; (3) if a functionally Hausdorff space $X$ contains an $F$-convergent injective sequence for some meager filter $F$, then for every $T_1$-space $Y$ that contains two non-empty open sets with disjoint closures, the function space $C_p(X,Y)$ is meager. Also we investigate properties of filters $F$ admitting an injective $F$-convergent sequence in $betaomega$.
In this paper, we continue the study of function spaces equipped with topologies of (strong) uniform convergence on bornologies initiated by Beer and Levi cite{beer-levi:09}. In particular, we investigate some topological properties these function sp aces defined by topological games. In addition, we also give further characterizations of metrizability and completeness properties of these function spaces.
The structure of topological spaces is analysed here through the lenses of fibrous preorders. Each topological space has an associated fibrous preorder and those fibrous preorders which return a topological space are called spacial. A special class o f spacial fibrous preorders consisting of an interconnected family of preorders indexed by a unitary magma is called cartesian and studied here. Topological spaces that are obtained from those fibrous preorders, with a unitary magma emph{I}, are called emph{I}-cartesian and characterized. The characterization reveals a hidden structure of such spaces. Several other characterizations are obtained and special attention is drawn to the case of a monoid equipped with a topology. A wide range of examples is provided, as well as general procedures to obtain topologies from other data types such as groups and their actions. Metric spaces and normed spaces are considered as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا