ترغب بنشر مسار تعليمي؟ اضغط هنا

The Congruence Subgroup Problem for low rank Free and Free Metabelian groups

92   0   0.0 ( 0 )
 نشر من قبل David El-Chai Ben-Ezra
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The congruence subgroup problem for a finitely generated group $Gamma$ asks whether $widehat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite completion of $X$. In this paper we first give two new short proofs of two known results (for $Gamma=F_{2}$ and $Phi_{2}$) and a new result for $Gamma=Phi_{3}$: 1. $Cleft(F_{2}right)=left{ eright}$ when $F_{2}$ is the free group on two generators. 2. $Cleft(Phi_{2}right)=hat{F}_{omega}$ when $Phi_{n}$ is the free metabelian group on $n$ generators, and $hat{F}_{omega}$ is the free profinite group on $aleph_{0}$ generators. 3. $Cleft(Phi_{3}right)$ contains $hat{F}_{omega}$. Results 2. and 3. should be contrasted with an upcoming result of the first author showing that $Cleft(Phi_{n}right)$ is abelian for $ngeq4$.

قيم البحث

اقرأ أيضاً

In this paper we describe the profinite completion of the free solvable group on m generators of solvability length r>1. Then, we show that for m=r=2, the free metabelian group on two generators does not have the Congruence Subgroup Property.
The congruence subgroup problem for a finitely generated group $Gamma$ asks whether the map $hat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite comp letion of $X$. It is well known that for finitely generated free abelian groups $Cleft(mathbb{Z}^{n}right)=left{ 1right}$ for every $ngeq3$, but $Cleft(mathbb{Z}^{2}right)=hat{F}_{omega}$, where $hat{F}_{omega}$ is the free profinite group on countably many generators. Considering $Phi_{n}$, the free metabelian group on $n$ generators, it was also proven that $Cleft(Phi_{2}right)=hat{F}_{omega}$ and $Cleft(Phi_{3}right)supseteqhat{F}_{omega}$. In this paper we prove that $Cleft(Phi_{n}right)$ for $ngeq4$ is abelian. So, while the dichotomy in the abelian case is between $n=2$ and $ngeq3$, in the metabelian case it is between $n=2,3$ and $ngeq4$.
The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gammaright)$? Here $hat{X}$ denotes the profinit e completion of $X$. In this paper we investigate $Cleft(IA(Phi_{n}),Phi_{n}right)$, where $Phi_{n}$ is a free metabelian group on $ngeq4$ generators, and $IA(Phi_{n})=ker(Aut(Phi_{n})to GL_{n}(mathbb{Z}))$. We show that in this case $C(IA(Phi_{n}),Phi_{n})$ is abelian, but not trivial, and not even finitely generated. This behavior is very different from what happens for free metabelian group on $n=2,3$ generators, or for finitely generated nilpotent groups.
The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gammaright)$? Here $hat{X}$ denotes the profinit e completion of $X$. In the case $G=Aut(Gamma)$ we denote $Cleft(Gammaright)=Cleft(Aut(Gamma),Gammaright)$. Let $Gamma$ be a finitely generated group, $bar{Gamma}=Gamma/[Gamma,Gamma]$, and $Gamma^{*}=bar{Gamma}/tor(bar{Gamma})congmathbb{Z}^{(d)}$. Denote $Aut^{*}(Gamma)=textrm{Im}(Aut(Gamma)to Aut(Gamma^{*}))leq GL_{d}(mathbb{Z})$. In this paper we show that when $Gamma$ is nilpotent, there is a canonical isomorphism $Cleft(Gammaright)simeq C(Aut^{*}(Gamma),Gamma^{*})$. In other words, $Cleft(Gammaright)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Gamma)$. In particular, in the case where $Gamma=Psi_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Psi_{n,c})=C(mathbb{Z}^{(n)})={e}$ whenever $ngeq3$, and $C(Psi_{2,c})=C(mathbb{Z}^{(2)})=hat{F}_{omega}$ = the free profinite group on countable number of generators.
We prove that the finitely presentable subgroups of residually free groups are separable and that the subgroups of type $mathrm{FP}_infty$ are virtual retracts. We describe a uniform solution to the membership problem for finitely presentable subgroups of residually free groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا