ﻻ يوجد ملخص باللغة العربية
We report follow-up observations of the Crab nebula with the PolarLight X-ray polarimeter, which revealed a possible variation in polarization associated with a pulsar glitch in 2019. The new observations confirm that the polarization has recovered roughly 100 days after the glitch. With the new observations, we find that the polarization angle (PA) measured with PolarLight from the total nebular emission has a difference of 18.0 +- 4.6 (deg) from that measured 42 years ago with OSO-8, indicating a secular evolution of polarization with either the Crab nebula or pulsar. The long-term variation in PA could be a result of multiple glitches in the history, magnetic reconnection or movement of synchrotron emitting structures in the nebula, or secular evolution of the pulsar magnetic geometry.
We present updated measurements of the Crab pulsar glitch of 2019 July 23 using a dataset of pulse arrival times spanning $sim$5 months. On MJD 58687, the pulsar underwent its seventh largest glitch observed to date, characterised by an instantaneous
We present broadband (3 -- 78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power-law in this energy band, spatially resolved spe
The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 A.D. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core collapse SN. Intensive searches
In this paper we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature
The Crab nebula is so far the only celestial object with a statistically significant detection in soft x-ray polarimetry, a window that has not been explored in astronomy since the 1970s. However, soft x-ray polarimetry is expected to be a sensitive